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Abstract

Title: Theoretical and Numerical Conformal Mapping

Author: Moshe Dubiner

Submited to the Department of Mathematics on January 1981,
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

Many numerical simulations, in particular that of a two
dimensional incompressible free boundary flow, can be done by
performing conformal mapping of the flow domain onto a half
plane. The detailed behaviour of the conformal mapping, which
is closely related to the detailed behaviour of the solution
to a two dimensional Dirichlet problem, is analysed. A
uniform asymptotic expansion to the conformal map of a slender
domain is constructed. 1Its salient features are explained and
later generalized by theorems valid for arbitrary domains.

It is demonstrated that the conformal.m£p°onto a disk can not
expand distances beyond a certain bound but can be extremely
contracting. The logarithm of its derivative is shown to be
well behaved. A general perturbation formula from an

arbitrary domain to an arbitrary domain which preserves many
features 6& the infinitesmal perturbation formula is derived,

and its use is demonstrated on a fractal. These results
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utilize two estimates, correct up to a constant factor, of the i
conformal distance and the location of its geodesics.

The above mentioned theory motivates a new numerical !

method for the direct computation of the conformal map. When
the domain's boundary is resolved by N points our method
requires O(N) memory locations and O(N2 ) arithmetic
operations. Up to a constant factor the memory requirement is
the best possible and the operations number is the lowest
achieved so far. Both are an O(N) improvement on the only
other direct numerical conformal mapping method which can
handle complicated domains. Moreover our numerical
approximation has the same "exponential decay of influence” as

that of the exact problem.

Thesis Supervisor: Steven A. Orszag.

Title: Professor of Applied Mathematics.




0. Introduction.

Many two dimensional physical problems require the ‘
solution of Laplace's equation in a complicated domain (1 .

One way to solve these problems is to conformally map {1 onto

the unit disk D(0,1) or a half plane [)(«) . Once that is
done the Poisson kernel provides the solution to the Dirichlet
or restricted Neumann boundary value problems. Hilbert's
generalization solves a mixture of the two where each applies
on part ot the boundary (but it doesn't solve the general
Neumann boundafy condition). Conversely any method of
computing the Dirichlet or Neumann solution can be used to
calculate the conformal map (see Theorem 5.3) Sut there is
little reason to do it. ‘

There exists a unique conformal mapping / of {1 onto
0¢0,1) up to specifying 6(01 and AA«"D«J/U? for some
well. Classical complex analysis demonstrates that on the
boundary 2.1 lll is about as smooth as 9{L is and, of course,i/
is analytic inside. However, [‘ao,//a)]-i is ill posed in

terms of any reasonable norm of (L even when # is restricted

to be well away from J9fl. For example take
Q-3 Mw/[fw(-’-zf - (o] (0.1)

wvhere the notation means Qtf%%l(/ﬂ»«(-}l 3] [ 3¢ Dfe, 1)} .




It is a smooth domain which looks like an ellipse inflated
ingide a rectangle centered at the origin of length 21 and
width 2- -*Wf"“"/(e 7‘) . But the conformal mapping taking
{1l to D(o,4) and 0 to 0 is

lrm- 2ot T4 ‘"‘1 Hanf T4 """ (0.2)

80

34,. fenlu.t _ - codr T4 (0.3)
/(«l la=0 4 .

which decreases exponentially in ,( and equals 0.000000603
gor £:10 1 The curvature of 9] near the ends relative to
{'s diameter is O(/) but it is innocent of (0.3). The
eccentric cigar shape of {) is to blame and the same would
happen for the smooth paddle-shaped domain of Figure 0.1l.

Except near the ends example (0.l1) is a slender domain.
A domain {] is called ¢ slender with & small (say, 9<¢< 10 )
iff A0 \(»} is composed of two connected components W, and
W, such that for each ¢eW,

| Xtu, W) |- |u-Al <€ (0.4)

l/\m; j‘x:": l <¢ (0.5)

.3







where («W; minimizes [&-«| and X(u,Wa] is W,'s
curvature at A . Condition (0.4) requires W, to be nearly
straight and condition (0.5) requires \W; to be nearly
parallel to W, . Parametrize W, by its arc length £
starting from an arbitrary fixed point. Each u¢(l can be

uniquely written as
= W8T - A AfErai] a<kt< Argrm (6.6

where A(£4] is the inside unit normal at W,l4) and ,((4) is
the distance of A4} from Wo(4) along the direction Ar4/ so
that W.,H)w-(r.uﬁf-()é Wy . Let us normalize the coordinate

system (A,)h in an approximately isotropic way

o
oo T # JAm_ ¢
gew): T[S -4 T _L] (0.7)

The map ﬁ' from {1 onto ./1.=f3 [ I 3l<§]- is quasi-
conformal with eccentricrity bounded by c¢¢ (see [7] for’
definition). Let ? be the exact conformal map from L) ontod

sending Wjy(2ee) to rto9 respectively. Clearly
/(m:#«m(?(m (0.8)

conformally maps {1 onto N/0,1) and so does




|
|

f
|
|
1

?
!

/(u,ule w-flo) _ <00 (0.9)
1i- !ma?o') 4

and it sends ¥¢{l to Q . The real number ¢ is determined by

A f10,01> 0 . (0.10)

where 94 denotes differentiation with respect to the first

variable. Formula (0.8) is inserted in (0.9) and results in

s J - -t Q0 drv
/(ow): Cami-grpl g ¢ Arg Q000 (0.11)
M[’(w- 761

and (0.11)'s derivative is

2,.{(«,0): i Jla) m[zﬂwgrm] é"A'V 207 (0.12)
ceth {91 - 776 ]
Define 5”(«,0) by replacing7 with ? in (0.11) . It is a
quasi-conformal map from Ll onto D(0,2) of at most C¢
eccentricity sending ¢ to (. Hence 5"{74}) is expected to
be close to {('; {#) in some sense. Indeed formula (3.3) and

others prove that

Ilv\wa"(«,m-lnaﬁjw,w{<c€[9‘(m-7(wl (0.13)

where

=gty




1 1,
=7 %o T¢ 0nn - (0.14)

is defined on nonanalytic functions. Let us press on with the

heuristics. Formula (0.12) for g}%f shows that

J(Ml

’ZL I- A![»!(m] -

4(0)

Ay 3«{'{«,0}# -‘n‘[
iy A sia [

al1) (0.15)
Aamn]+

AA’ Un 5’7«,0) = == [0, WolStm1, Wp] *+ B(1) (0.16)

where «[] is the change in angle of W, between 0= Wo[£/¥]
and «'s projection on W, Wo [4("1] . Thus qlobally{
performs reasonable rotation but extreme scaling. 1In
retrospect it should not be surprising because conformal maps
are defined by being locally angle pfeserving with no scaling
restrictions attached.

Formula (0.16) is easy to interpret. It obviously holds ~
(up to translation in ﬁu7 ?4‘€(M) depending on its
normalizaéion) for 4¢df] , where {) is a general domain. Thus

{0.16) states that for slender domains

! /\17 34(-,0113 [ = (1) (0.17)




where the notation means //447 Op‘-dla';(!) - A‘y Da//a,m{sc and
A2l is near U , say the closest boundary point. The result
(0.17) holds in general as proven by Theorem 5.4. Formula
(0.15) is not that easy to generalize. Unlike (0.16), its
right side depends on the structure of {1l between ¢ and U.
The first question is: what does 'between' mean in general?
In order to gain some insight let us consider a more
complicated example.

Let Q<€<<{

!

.Q.(eh{xu'y{.sh 09 >0 } (0.18)

The domain (0.18) has the following property. Any domain L
is said to be a £>0 conjugation of the domains {JLV}WI iff
for any uell there exists a Vel and two complex numbers a, /s

such that

vedwm-ad,+4 . (0.19)

slu, Awm 0] s ¢ (0.20)

the distance from Al to {l relative to u is defined by
(10.113). The interested reader may prove




that any ¢ slender domain is a ¢¢ conjugation of
Ag=Crrayy] 191« -} (0.21)

where C>0 is constant. Domain (0.18) is a ¢¢ conjugation of

A4 and

Ap=Creayl x-44*>0} (0.22)
A .
Az ENCAL) = {xdg] % $y*>0 } (0.23)
A - .
_j'_"z CNv [~e,c(2n1)T] : (0.24)
Nne=ch .

where [a,é] is the closed interval between a and {. We
have to match the conformal maps from all the A(u) € Qleg)
In this case it is easiest to do when considering {[‘-,e-, Llee1]
, the conformal map from {l(e) onto the half plane N (=)

normalized by
e, )=t (0.25)

The domain Llc€) is periodic and symmetric so we can limit

ourselves to







u=xu'7 0sY<T

We start from
, L
J(«.«-,A‘,) : 2aned et
*t is modified to

x>é—-o(r—_:_-) IX~é—r4.(7~‘h‘)l > €

‘g TV
Jrxedy = 0601 = 2arcimd A A Ey ¥

where

Aowy « L areces (-€x) dexst

(0.26)

(0.27)

(0.28)

(0.29)

(0.30)

(0.31)

and the exact limitation (0.28) will follow from comparison

with the following formulas. A priori rigorous bounds caﬁ be

derived but as usual it is inconvenient. Next

.om
6(0:,«,./1.,,): (e e

(0.32)




i
(4
;
i
i
H
4

(there is no natural normalization). We already know how to
match the l[«.o‘h-/'-(«)]'s where A(njc ads+fb : recall
(0.7,8). They match with (0.28,29) and give

dexel,ofi ' i
t“‘t’o(ﬁ:) , Ixedeyl»e x4 ‘ty TI>»>€ (0.33)

0"[»«4'7,“,12(:)]:26%&[&'“{% A0 .4 7:%?)] (0.34)

where
P =‘°—f"q 9 (0.35)

Now we can match 6(-,&,./(,) to (0.33,34) and obtain

i/
‘x,;,,n”,«g/’ (0.36)

A(+)

: - I (m) J
frxripion, Qe =4 € 735 cos| - Exefoiy BEELT | (0.37)
Similarly, d(~ o, A1) is matched to (0.28,29):

| x,?‘,{("-n | <<1 (0.38)




ﬁx«'g,o-,ﬂ(s)] =\Es'(V1» F[x-£+ily-hoal] - 1) (0.39)

In particular the maximum and minimum of I’a“{[«,oo,_ﬂ(i)][

are obtained at §}+iw‘ -% respectively and
aiﬂ%,m,a,nm]ﬂvV; (0.40)
wdd(m
~ A -~
% ‘[-% yon  LUE] ~ _:’_ e it (0.41)

What have we learned from example (0.18)? Figure 0.3
illustrates the direction of information flow (The reverse of
the direction of dependence) which were exhibited while
6"[~,o~,.ﬂ(t)] has been constructed. The situration is quite
special yet we have some grounds to suspect that in general
DQ,{(u,o“Q) and other functions depend mainly on {l's part
‘around' the curve of least Euclidian distance between ¢¢ and
U inside {1 . A close inspection of (0.27-38) reveals that

the above mentioned curve frome to ¢ resembles

Pnul): (weld | OHgﬁ’f?;%fd} (0.42)

The curvces ["(u,0,d{l) are called geodesics because they are

the geodesics of a certain conformally invarient metric

15




p(nu L) of Theorem 1.1. Some geodesics of Ay are
illustrated in Figure 0.4. Notice for any two w,veAd s far
away .the most of M (u, O,Aﬂ is exponentially close to A,,'s
axis ot symmetry. Theorem 8.3 demonstrates that in general
the geodesics try to keep away from the boundary.

The connection between geodesics and lines of least
Buclidian distance is proven in Theorem 9.2.

Now that we have some idea on what 'between' and
means it is time to find out how the rest of (L affects
ﬁ« P ﬁmv,.ﬂ) and other guantities. For that purpose
let us return to € slender domains and compute a next order
correction to (0.7). We start by calculating D;;?'. The

gradient ot (0.6) is

A< A4 ~Atm o bn ALscn1] ) Agwd A ] (0.43)
and of (0.7)

ali(«) . 277’5,[(1-(#(«) '.),,AK{:) )dseddA] (0.44)

Formulas (0.43,44) combine into

16
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TA A kA 45

Y 1+ A b A

Define the éi correction furnction

777

Then

where

1

A

25 7,:-35?92#4' 7’{‘./“ =-274 y

J«,t(mao

€ Hm) 200 (A L2000 A L2Ha0T)

/A(M,l ——

7 144 A W A b A st

Notice that [l is OO(c) slender iff

E “n| sc
, ﬁ?a"’“( | z_

17

(0.45)

(0.46)

(0.47)

(0.48)

(0.49)

(0.50)

A o S A e = % e,




Problem (0.47,48) has a unique solution up to an additive real

constant

wl _ (ﬁ)l a» Er 47 '3
(m--< ] A (0.51)
7* [ (o) - m , l

?(«h 7(«) -¢ ”(»zmm.,g(mwﬁ[grm-yrm] =
N

= (%) a.,ym; Jl‘ml[(y(w-;rm]] [ (6.52)

where

[Al = ARets - A o v (0.53)

Fromula (0.51) is an integral cquation of the first kind which
can be iterated to convergence. The first order correction to

7 with some modifications is
| gt~ + (( [tsor cuthtv-w) « Ty Rank(V-W)] 1AW (0.54)
a

where we have and will abbreviate

Urgtm , V2 FV), We giw) (0.55)

Recall (0.11)




(V-9 oV

b frinore o 25 00) - 2 4 20l (0.56)
80
o D/ru,w ~ 4 fmor~

*“C““‘” K,V W)+t Kiyv,Wed Z)] 1dw| (0.57)
a

Kluv,w) = etk (v-v) [ e (v-w) - ¥ cv-w] -
- Hand (v [ (v-w) ~Hand (7-w0] +

+17_-W"\/°7‘(V-W) - %M't( V-w) =

= 201(2.tm V) wnd(V-v) _ ok iy-7)
ZM(V-W’M(V-W)W(\ZW)[WW-M'M(W, (0.58)

and

AQM{“":‘”=»&\ 6(.«,0)*?/'13«‘\ {(m,()) (0.59)

80
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L ., ({m,m:% e 70,180

*ﬁ Lintsn L (U, v W)+ FTRT L UV, W Zi] Ll (0603

a
LV, VW)= KV, V, W)+ yKIVViWI
3y fruo
= : 1 W(le"V'MLU-V) _

. Gn(hnv) A r-D) |, , sk (0 MMV'] (0.61)
cnh (0-W) AmA LW

If we assume that /(W) is not only of order £ but is

also slowly varying, for instance AL) "a‘/u[wofJ!)*[(g)ﬁ(ﬂ”sC fos
then the integration in (0.57,60) can be done explicitly. Of
course that results is much easier to derive directly and is
of no interest to us. What we have wanted and obtained is the
relative dependence of 9, J(«,m on the boundary part
Q-Wo(f4°'§48,4"‘i44]) centered at #f:=Wy(s) of length AL .

When
0<Aag s Aa) € [a-w], | 6-W] (0.62)

the contrlling factor of A 's influence is

w;;.(@mn-[?rw,?m;l{ rY S
e W,,M(Q” 24 (0.63)




The asymptotically correct term is the same with ?’ replaced
by 7 . A graphic interpretation of (0.63) follows. 1In order
to affect . '/m,u) the data about QA 's shpae must travel
from & to (+. It is provided a free ride in {l's portion
between « and ¢ (in general on the gecdesic MU, {#) between
« and () but it must pay 7'77%@ per distance for travel
around any point 3 not betweer « and (!). The data is
thrifty so it will move along a geodesic (a cost minimizing
curve which turns out to agree with 0.42) to some point &
between ¢+ and «®t and will then enjoy a free ride to (. The
optimal choice of & is the middle point among «, ¢/, w+ . Let
us call the total minimal cost Px (W, a4, 1, ¢#) ., Then when
the & data reaches ¢+ its intensity is deminished by a factor
of éq/“ . A similar situation holds for other function of
the conformal map besides lL\Dvl&?M'U) r except that the ride
on the geodesic between A and {(# is not free but on a reduced
fare. For instance (0.57,58) shows that the controlling
factor of @'s influence on .Gn {(M,U) is

éz""?{ / Ftw)- [y/m, ?‘rm [-2] 7(«;)- gfwle

A
@I 5 (0.64)

which means that the travel on [7(1n,4#) is done on a half fare.
Notice that this does not change &, the point of transfer to
Miwn,2) .

Now that we know what (0.63) means let us understand

e g = =
. N b,

e e L b




-1
where it comes from. The term @ P> is simply the decay of a

Dirichlet or Neumann data from & to M(¥,{¢) and is already i
present in .7 .54). However, in the computation of (0‘.58) a
cancellation has occurred and another 6-7"0* has appeared.
Lest it look like a freak accident let us derive it from u
another point of view, close in spirit if not in technical

complexity to section l0's. Suppose that {1 is not only ¢

slender but is & close to A. If @ is between v+ and ¢
than ,ﬂx=0 so let us consider (¢4 between ©“ and @ (the

remaining case is similar). Define
£3) = Aumd(3-Rov) | (0.65)

The domain 5‘(.[2) is close to the unit disk. The image of &
has length of order e.%AJ . A major change in A modifies

6\(.(2) by a region away from z‘(w f {(Ul whose area is of

order (6"7"0"44)1 . The details will be presented in Section
10 but it takes no great leap of imagination to conclude that
& 's effect is at most proportional to that area, and that is
where the extra éilo" comes from. What about ?lm ? It is
normaiized so that 7(1‘-“) =4 and lfrwu[ or lf{m*il
is of order €¥* so A 's influences on gr4) is of order
1P 4 9)%

GE

The interpretation of (0.63,64) was chosen so that it is

generalizable to arbitrary domains, with some modifications.




The asymptotic theory has to be replaced by estimation up to a
constant factor. The measure u of {l's deviation from A's

shape is special and anyway there is no ideal general domain.

Instead we will pick a wide challange and consider a

perturbation of a general domain L to a specified general

domain ﬁ . We will divide the perturbation into parts and
prove in Theorem 10.5' that each such part & of diameter 44‘
centered at «¢ affects ﬂn’a.«\ {(«,0] by J{'(ﬁhM,«,U) which
is a generalization of (0.63) with 4up lmca)|  replaced by
ZA-(% . The term J(u,Aa,m,o) will be first encountered in

Theorem 8.6 and

Jyth0182, 0,41« Ango ICh, 80, 00,051 (0.66)
os (v, 0

The general interaction between ¢, ¢ «# and O is described

by Theorem 4.6, which should be combined with Theorem 9.2.

The local length scale A /[4£(#w)] will be generalized into
arw, 4, ) of (9.2). Its dependence'on #,4¢ is unfortunatly
unavoidable: consider a half plane {l= (). The lack of a
local length scale, except of éwéltv-ﬁiil which vanishes on
the boundary is the most important general indegredient
missing in slender domains. It is not fortuitous that the
conformal metric pP(#,{#) blows up at the boundary.

Our examples were mostly of smooth domains but notice

that domain (0.18) has a very sharp bend at -51-*4'71'. which




coerresponds to qu's corner, and it did not distrub us from

completing a uniform asymptotic approximation. Theorem (10.7)

proves an interesting property of a fractal, which is the
applied mathematician's ultimate in roughness.‘ However,
throghout this thesis we insist on obtaining specific
estimates at specific points, in contrast to the ‘average'
type approach of P.D.E. Theory. That is an advantage when it
works but it fails near a rough boundary. In Section 5 it is
shown how to patch our results with P.D.E. Theory. Some
synthesis is clearly required.

Let us now consider the numerical computation of ﬂ
conformal mappings. As remarked earlier, any Laplace solver
will do. Suppose that the domain {1 is covered by J(N?)
points,V of which are on the boundary 91. Then a Laplace
solver requires storing (J(#Y numbers and performing from
O (Nl N) to O(N3?) operations, where the last estimate is
more realistic for complicated domains. The grid set up is

troublesome, especialy for multiscaled and time dependent

(free boundary) domains.

One way to avoi&e an internal grid is by using a vortex
represontation. That results in an integral equation of the
first kind which is numerically formulated as a set of A/xN
linear equations. It can be solved by by Gaussian elimination
which requires (J (M%) memory locations and a3 operatios.
Alternativly one may iterate the system using @(V) memory and
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@(A/"l operations per iteration. This is the'numericl
approximation to Neumann's series, and the later is gaurenteed
to converge for any single sheeted domain satisfying some mild
conditions. The best existing Rayleigh-taylor instability
simulation has been done in that way by Baker, Meiron and
Orszaqg [12). It is relatively easy to program and generelizes
to 3 dimensions. Moreover it can handle two incompressible
fluids problems which conformal mapping alohe can not solve
unless the fluids density ratio is 0 or 1. However
Neumann's series's convergence is precarious. The rate of
convergence for the domain ¢ equals that for its exterior
domain a\.Q.cand in p;tticular convergence fails for
multisheeted domains and is very slow when two separate parts
of JJSl approach each other. The domain (0.18) requires 0(%)
iterations per order reduction in the error. Moreover the
Neumann series seems hard to modify in a way which will
extract a sinqularity such as a corner and still preserve
convergence for general domains.

The most natural numerical conformal mapping computation
is done by taylor expanding the conformal function from the
unit disk onto (l. Several such methods are listed in (9 ].
The best of them takes only (3(N) memory locations and J(Ahw)
operations but we have seen that the series will not converge

=7
to domain (0.18) before A:-¢& € terms are taken.

The first dirct computation of the conformal map onto a




cigar shaped domain has been done by Manikoff and Zemack [ ).
Their method is to set up a system of Mx/ nonlinear equatins
and solve them by Newton iteration. Each iteration takes U(A)‘}
memory and @(nv3) operations and only few itera'tions are
required.

Any partial differential equation on a time dependent
domain can be solved by a Green's function method which
utilizes only boundary data. This is not usually done because
it takes O(IV“(“L) memory locations and O(A/“('z) operations
in d dimensions which is unresonable for d?,?. For the V?¢
operator in 2 dimensions better can be done because then the
Green's function G (u,v,{l) is consructable from G (y, U, L1}
and its harmonic conjugate where (5, is constant. That is the
basis of our method, though it will be presented in a
different way. It takes ((A/) memory locations and (A%
operations. Its other virtues will be described in section

1l.




1. The Conformal Metric.

Throughout this thesis {1l is assumed to be a simply
connected open subset of the compact (with<o0) complex plane

such that 2\.0. contains more than one point, unless stated

otherwise. The Riemann mapping theorem states that L) can be
conformally mapped onto any other domain satisfying the above
mentioned requirements. For each we(]l let /(',0,-0-)
conformally map {1 onto the unit disc and send (- to the

center:

/(.Q,o,.ﬂnoro,ih{;l tg1<1} (1.1)

j(w.a,ﬂho (1.2)

The mapping function f is unique up to rotation. The
necessity of specifying (¢ is a nuisance but is also a very
useful theoreticl tool because it allows us to focus on any
part of {1 at will.

The following theorem is the cornerstone of our approach.
It is original in spirit though the results are classical

except for (1.3).
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Theorem 1l.1: For any «,9¢ ()

Flu, L)

Wwhlue, Q)] = (1.3)
l “l I Mlp(u’(’l_a)
[ fuio )] = Zank peo,v, ) (1.4)

where

Flu 21~ |24 d(u,o,.a)[ (1.5)

fu,0, 1= Man E(3, L) | .
Ia“a neSSeu, v, 1) S ') R 3, .6)
§‘(u,o,.m=[mn | ne® M,oc/"‘} (1.7)

The function p{u,o) is a conformally invariant metric. In
particular, it is symmetric and satisfies the triangle
inequality. The functions ,Zn Fln) and Fiu) are

subharmonic and satisfy
THonF = «F? (1.8)

The open geodesic M(u,#) exists, is unique, analytic and is
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characterized by

I F =X om N | (1.9)

where 71 is the normal and X is its curvature of /7. The
global geometry under distance/a is Lobachevski's hyperbolic
geometry. Thus, for any «,(,s9¢ {2 a/[i'(a,o),v] is a circular

arc orthogonal to the unit circle.

Proof: Clearly

: l(a,u,.ﬂ.):/[o/(u,u,ﬂl,/w,v,ﬂ),o(o,i)] (1.10)
[9,9,0001)] = 94— (1.11)
frp.q.000) » £

Differentiation with respect to U gives

1-l41v,00.0)1%

a,,/(a,v,ﬂ).a“p’(u.u,ﬂ)[LJ(““Z) i (1.12)
Fta,Q)=] p’(u,u,ﬂ.) [ [1- ;D’m,w,.(zn‘]”‘ (1.13)

Obviously




. A
a5 [f)] <] 243! (1.14)

with equality iff

An? % 0/'3’ S A"?D/(J’ (1.15)

e . UL A T A

Thus H

f%’;ﬁ’— [L-1fepr*T" < Feg) (.16 z.

75—3—' MJ(M;{ < F(3) (1.17)
Integrating on any [7¢ SS(u,¢#) provides
ancond 1 {1311 < ( Fl3) 3 (1.18)
| frg1 < CF Mgl

Equality holds iff (1.15) is satisfied on all /7 , which
happens iff 6//7) is the straight line between 0 and 6(«) .
We have just proven (l1l.4) and characterized the geodesics
which pass through (# . The generl geodesics are obtained by
(1.10,11). Inserting (l.4) in (1.13) gives (1.3).

Pormula (1.9) is the two dimensional case of Euler's

equation of geometrical optics. 1In order to obtain (1.8) take




the logarithm of (1.13).

AF=R;A316-&.(1-¢>’"() (1.19)
; where
K=R,lu6 | (1.20)
HBence
VA= (ke tbnf, hma.bnf) (1.21)
Ivhi =I-?Zl- z (e‘— Y- (1.227
and
Vln(i-c-“é):—l_—ze-.u- vd (1.23)
AN 4 2 3
7 F-WWAI 1 4F . (1.24)

While proving (1.18) we haven't actually relied on the

univalence of £ or on its being onto /(0,1) . Thus we have
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proven Schwarz's lemma which is formula (1.28) of the i
following amalgamation of monotonicity results about F,f and \

I the harmonic measure

W(W,a,ﬂiew p/(w,a,ﬂ; We3N (1.25)

Theorem 1.2: Suppose that 7 is a nonconstant analytic

function from {4 into {1,

| (1.26)
| and Gell;. Then
F(o,.(lualaog/m[ F[gl@l,ﬂz] (1.27)
and equivalently for any 4,t7¢ (13
Alunu, Qe) »pLgiv gr0), Qa1 (1.28)

Por any w¢?(3ﬂ1) N,

" £ ;([‘" "’ﬂﬂl (1.29)

W

Ah(3,0,04)
2‘7(;31

and equivalently for any Wr—‘j(aﬂz)n A1,

3¢ w’({uh l




wmgw), o, 1] <o [W, gor, 0.] (1.30)

Proof: Formula (1.27) is well known and trivial. It

combines with

7[§ra,o,.au] c S[;rw,gm, a2,] (1.31)

to reprove (1.28). 1In turn (1.28) can be inserted in (1.3)
and gives (1.29) with the left hand sum restricted to a single
3 which is satisfactory when 27 is univalent. Formula (1.30)
is the integral of (1.29).

Here follows the general proof of (1.29). Normalize

Qg2 0300 =3[ Re}>0} (1.32)

0901 |, w=Q (1.33)

Because 3@(«)]:D(~) it follows that for any 36 Q@) such
that 7(516‘30(“)

3630(") (1.34)
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3370)}0-

Moreover for any 2&'306*)

{aa‘ﬁpi,o&a;]{= 2

Thus (1.29) is rewritten as

-

12432

1
ac%%?«bh ﬁ?@’ 1-32

Clearly

Con ]
1-200 :%éﬁ.ﬁ_

1731

and for anoa»)

. A
mgq;w ?E%%
80
Re[1-3 [0

which proves (1.37).

>0

2
1-3*

N
-~

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)




In most applications of theorem 1.2 is the identity
map or the cover map of a multisheeted domain, which will be

defined in section 3.
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2. Conformal Mapping onto a Half Plane.

We want to extend /(-,u,_ﬂ.) to 4#'s in the boundary.
But 30 is not always the right set to study. For example the

point (#=1 on the boundary of‘?\{gl&ﬂ)}is really two
points: 0+0-4{ and 0-Q-¢ . The simplest solution to our
problem is to let some 0’(-,;04.().) distinguish between the
points. The set {0 Qv3Q is the smallest L) completion
which has a continuous extension of the identity map 4,'/;5)_48.
Similarly let ﬂ‘hﬂ.u’jﬂ be the smallest _ﬂ completion with
continuous extensions of both 4.'4( and f(vlu,_()_] for some, and

hence all, «¢{) . The set 3-Q can be represented as
QLT F= (v, ft) 0 Q ;
; 3 {0)} C{‘O'} ' Uj‘) v, J’UI)“"/«"C‘)} (2.1)
For each 4¢J(L, let 5(-,0,53_) be the conformal map of ()

onto a half plane whose continuous extension to _(2‘6 sends (¢

toon:

5(11'0"0'):0[“):{3’&3)0} (2.2)

0’(0,«,ﬂ)= oo (2.3)
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This determines (; up to scaling and translation. The maps
J(~,U,.Q.) where (e{l match those where ¢eJ0:

Theorem 2.1: For any (eJd{l, there exist two real

functions 2 and ¥ such that for each Uuel , LG

Jw,o )= e"*’”’[z-/m({m,m +0(/a(w)] (2.4)
'0<p(@)-»0 (2.5)

Proof: Take some WG:_(_l . Rearranging (1.10,11) results in

. e
fruor--er @) fumi-e — (2.6)
1-framne’

where
ne“=5{a,u) , >0 (2.7)

Let ¢->»¢J. Then //a,m-s/(f}, )} 80 Al vy SO

!»e":' (m,09) 116':"/0« o)
: > Kfraw]- L2 _Lin ,
S >Kiframw] 1-€=finw) 2.9

The function K conformaly maps D(9/1) onto 0fe) and

Vi 2




6(0’.«1):6“" to o 30

I([d{«,w)ba/lu,mn'é (2.9)

where a4 1is a scaling constant and 6 is a translation

constant. Combining (2.8,9) with (2.6) proves (2.4) with

ﬂ=d(1-ﬁ) (2.10)

r= r+«,-6(1-n)+no*ﬁzﬁm/a¢{m (2.11)

The rotation factor in (2.11) is associated with f becaused

.ls not unique.

’ ------
Theorem 1.1 is easily extended to the boundary.

Theorem 2.2: For any u,«;c.ﬂ 'U&_Q.(‘

Qe feot) | _
dm A, 0)
2
=2 00(u,y4)
. Ew) srpwwo) [ 12 S0 (2.12)
F(wn) 1+ € W,
Pou,s0,9) X EPICRY yeld (2.13)
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Yl &) = ﬁo'mg Jlaw, o) FeIQ (2.14)

{lay->

and the limit exists alttough Qfu GF)zos . For any Upe/'uy,v),
Wo‘r’(u;(ﬂ

Pluts, o) € U, 44,490 € B0, 8, U1g) (2.15)

in particular

| $(u,0,90] ¢ ptur,u) (2.16)

suppose Fedll. Then
(13,3 _ ét;ﬁ(“lwla)

Proof: When U<{l formula (2.12) is an immediate consequence
of Theorem 1. Suppose (ed{l and let Q3¢ . Formula 1.4
implies that

A {a'(’): L‘Zv‘ 1", (",Uﬂ * .
4 : -l to o (2.18)

according to Theorem 2




A frae] - i-p/o)kzdm,{in 5(410)) (2.19)
30
pwuyi= L b o ng(“la,, + 6(1) (2.20)
Thus
$lu, 00,491 £ b g ’{""J'% + @(1) (2.21) !

which proves the existence of ¢(1’n,«l,&) and formula (2.17).

Formulas (2.12,14) for «{l imply (2.12) for 0€311 . Formula

(2.15) follows from the triangle inequality for the metrﬁc £ -
We had to consider ratios of 5' at different points

beause in general there is no natural normalization of

J(',(}') . When 2 ¢9Ll and the boundary is smooth near os so

that the following derivative exists, one normalizes by

[ % l{("‘z"“/ﬂ)l =1 (2.22)




v wa.

(3.1)
h
Once suitable estimates (3.l1) are obtained, we get ]
. 4.‘;2( ( Faf) Mw < pluy) s
PseS(u0) Py
< ( Faf3) /} ¥ P eS(u,0) (3.2)
Py

When [l is symmetric with respect to reflection in the

straight line betweenn ¢4+ and ¢ the minimization over curves
is unnecessary because then (M(u, 1)
not matter whether it minimizes { F1 or not.
domains one can construct a £<<{

g'(',(),.().) onto ./1={al [%3%%} . Then the minimization

can be avoided:

and a similar upper bound holds.

Estimates of E..

In order to apply theorem 1 we need to estimate F as in

Pdgl < “3) £ F;(z)

is that line and it does

For slender

eccentric quasi conformal

1-£ Fa(3,Q1 " <
Y M[Ffﬂ'(a'ﬁ]’%?(g’l]]o[ﬁ hrw,/t]\

$ Pl ) | . (3.3)




There exist several classical results cor{cerning F(Z) .

Some of these results will be stated as theorems 3.1,4. The

connection to the general problem has not been used previously

to the best of my knowledge.

Theorem 3.1: For any @g¢[] where {l is allowed to be

multisheeted with at most /1 sheets

l £
oy W(M-?AL Flu, L) ¢

<of{a20] 3o¢C  AeDloa] s -ﬁl_—mf[DA-D‘/ll (3.4)

.A=Lm(v,ﬂ.)=,;—1-— (3.5)
C\{1-0)

Conjecture:
27
Ftudlis = 4up |34 -4 ] (3.6)

Equality holds iff A is the regular circular 3-gon of angle

aw

3 ° .
2 2 0.060 < 3= % 9.577 (3.7)
q - - W" . .

2



Corollary 3.2: Suppose that (elljoo. Then

—L __ <rQ) L
PEYTNY ' Mo, L) (3.8)
niv, L1 =¢'nv/{3ﬂ.-(91 (3.9)

The left side inequality of (3.8) is known as the 1/4
circle theorem. Thus even such a crude geometrical
consideration provides ~ up to a factor of 2. The advantage

of Imo(8,{l) over the pair (¢, {l) for the purpose of
estimating F(¢,{l] is apparent.

A slight sharpening of corrolary 3.2 will be useful

latar.

Theorem 3.3: Por any (#¢{l §eo

F(u, ()

2
A (9, L) ] (3.10)

i P emeee—————
4n(9 L) [i za)o:aﬂ-cl

Proof: Normalize (=0 and

nofj=u>0  uedld (3.11)

T T Xt




Denote

azaup |2 (3.12)
gi3)= 2[ (wame f(5,0,2)] (3.13)
2(p) = (?LF-T’- (3.14)

The function Z is univalent from D(g,a} thus Z is univalent

from 0(0,1) onto 2({l). By Corollary 3.2

F'o,2(] < 4 A[Q, 7] (3.15)

Flo Q)¢ =4 (3.16)
/ (if%)l

Accurate  bounds are obtainable by applying theorem
1.2 to ;¢ N3ell; where {l1,{1; are known. Requiring {; to
be simply connected may be very inconvenient because it must
depend on {1l 's global structure. Instead we can take a

multiconnected ﬂz and define




[ T

F‘P(@fﬂz) <
2ol (FO,0) | e lo) A wmply comectod } (3.17)
L Corollary 3.2 is of that type with

:\ D228\ =, p} pe0 4 D3, A9, Q)] (3.18)

S T N A

The general stationary condition on ff is that it equals (i;
minus some curves connecting é?\ill's components and
131((-}0,.?[)] is continuous across these curves. It is a
hard problem even for simple domains.

An easier approach is to coverSQQ with a simply

connected multisheeted domain

Qax 2S00, 02, 00)/R (3.19)

vhere ¢¢(l, is arbitrary and A is the homotopy relation

between curves in fll with fixed endpoints. The cover map

Teou(-, 070 1 Qox—>Q, (3.20)

simply sends each curve to its endpoint. For example an

annulus is covered by a helix and in accordance with Theorem

4S




FL3.(D0,0)\(0} )] = W;Z—L— ?

3

1 - F
> Tla?-_ 2 F[B, D(oli)] (3.21)

Lower bounds and a useful frame of reference are provided

by the capacity inequality. .

Theorem 3.4: For any (9¢.ﬂ

Fro,q) - & VEFw oAl . (3.22)

V) s 4 (( o L — dypion dyron) (3.23)
NeT(h) At [Wi-Wy

T(L) =(maamnc on A 7 | Apr0 | paj=1} (3.24)

When 9] is a Jordan curve a minimal "Z exists, is supported

on 9/A and equals there

pw)= oL s 0) (3.25)




Formulas (3.22,23) have a physical interpretation.

lines of total charge 1, perpendicular to the compl
are distributed in znu{u,ll) according to @,. They
themselves so as to minimize the total energy V. T
A
resulting potential at we¢C is
27«»,0;11;- 0 us A
G(&.0,0 1) ueC\ A

where the Green's function is

G(J,«,.ﬂ.)aﬁmla-w +7(5,u,ﬂ_;

G(-y0, 0], =0

and y(;,(!,.ﬂ) is harmonic in J,Ue.ﬂ. . Notice that

lﬁ(all’,ﬂ-)l . eGrZ,u,ﬂ)

F(o ). of(® L)

Theorem 3.1 follows easily and "naturally” from theo

Charge
ex plane
arrange

he

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

rem 3.4.
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Let us prove a distortion Theorem:

Theorem 3.5: For any (¢ {l #oo  Qéw<t . j

{

D[o,a__ )1'1 5[0(0,41) 0] < Dfo,=] (3.32) |
D[OI“;E#] C/[D("m,o]c D[0, aF®) (1+¥)] (3.33)

sp | W({(u,m-/\ayﬁu-o) aafiool] | €

uebd(9a)
< "f‘"’ ancHond x (3.34)
( where
A N(15) (3.35)
=‘:£"'°"‘E “_1 (3.36)

Proof: Normalize (/=90 , Aly)=4 . By definition D(o,z)r—.(Z
so for any ¢e ID(0,e)

e —— ——— - “ |




p(u,o,.(l) s,ﬂ[«,o, D@, ] _ (3.37)

Mdaﬂl;p'm,o,m,s archamk « (3.38)

which proves the right hand inequality of (3.32). The left

hand inequality is obtained as follows:

FElu,f) < 401, Q) < 4(1r141) (3.39)
(u,0,Q) > ATJ“— « L 4on (20w (3.40)
p =1 “t ° L-px ‘l

In order to prove (3.33,34) define the analytic function

] | (3.41)
7(«;&% 3.41

For any (1¢30(9,1)

R glw ¢ InFlo,0) ¢ Ins (3.42)

F“(o,/[oro,zi,a,.m) < 4N (0, 6’["7 ) (3.43)




F(g Q) ¢ 4]5(«,0,.(1;[ (3.44)

Re g(w Y iy (3.45)

In conclusion

7[0(0,1)16./1.={5l /R:auﬁ«,} (3.46)

Hence for any {«s Df9,«)

Z00,%,0(0,0] 7,/[0, 7(1,1/,/1.,] (3.47)
arean L, aw(‘cm/[ Aan -‘_-'—'i: Krm[ (3.48)
?(wc if—;-i anc/fon Dio,=) (3.49)

which implies (3.33,34).




4. Miscellanous Results Regarding Geodesics;

In this section we will prove some properties of the

geodesics.

—E(—!l-‘-aléM?ﬂ u-3 % | (4.1)
F(u,.ﬂ-) 3‘.0. U' }

Proof: Let >=V/mfiul . Then
la-gl < 2 e-31 (4.2)

for all acbﬂ. The region of 3!3 satisfying (4.2) is
connected and contains 31, u but not ¢ (unless U=y~ ) so
(4.2) holds for all JGC\-Q . Equation (3.23) can be
modified by distributing the lines of charge in

a\Q- 1 +# instead of A:Lwe(un,02) :
I (u,L2)

VIid) = nf

peT( a\Q) @

- g s o

Obviously

_A{ Zf'“ - 31‘_9‘ (: b -’3—7—'}-":{-}%\&1 (4.4)




thus

VA & Vg (40,000 + 240 x

which proves (4.1).

(4.5)

Theorem 4.2: Suppose that {;¢({l and p/lm,u,ﬂz) can be

analytically continued to a univalent (one to one) function of

vedl . Then (l; is strongly convex in the hyperbolic geometry

of () : for any M,Usﬂza either
Pra, v, () < Q4

or

My, 0y c 90y

20<2Q,

Proof: Clearly we can assume that

(4.6)

(4.7)

(4.8)

3 i




00(26:5111

(4.9)

The extended 6( 4 0, {l¢) conformally maps {L onto some domain,

{ly onto D}, A to 0 and ¢ to oco. Thus we can assume

{1=06) , uz0 , #z200
Define
Fa(1Rel+Cdm) Mg, e, (1)
Lemma 4.1 implies that
F(ﬁ',n)s::(r',ﬂz
Clearly
1AR = 1A
so

(FOT. 1T ¢ (F300 1431 = proe, Q)
) n

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

but n(qﬁﬁ,Il) uniquely minimizes the integral among all




curves in (0,0, (1) so M=p

Ren 30 (4.15)

VDT -

The integral will diverge iff 0 or ov are in 2{] but then we

take neighbors,

For any we/(0,2, Q) , Rets 30 so
Dlr)c Q-1 (4.16)
80
Re[N(r9,00,)-0] 30 (4.17)

thus Re M(0,o0 ,fl) 1is monotonically nondecreasing. If (4.6)
is violated a part of /7/0,e¢} ig a straight line in 0D(e; .
It is always true that [[/" (0,2),01 is a straight line :so
the Schwarz reflection principle implies that all
N0)1c?0(xr) and -DM)c fl  which proves (4.7,8).

The univalence reqiment cannot be weakened even to

LT 6(“.”:-04#0 for all Uefl. For example take

f@’%<ﬁ73<’{-}¢0(~) (4.18)




Theorem 4.2 is intended to confine geodesics but it has some

spinoffs about univalent continuability. For example:

Corollary 4.3: Suppose that (le¢ D(6,4) and {?oguhili

can be analytically continued to a univalent function of all

UeD(®,3a) . Then ) is convex.

Proof: For any oqaeil apply Theorem 4.2 to IZ<i7z where
is the disc whose center is on the straight line between «
and ¢ which contains and is tangent to Q(¢,a) .

The following result shows how a geodesic between

bounaary points is perturbed when the domain is perturbed.

Theorem 4.4: Suppose that (117 (2

X307, (4.19)

and 5‘1‘,3 are in the same connected component of N \(l1 as

well as 3.0 \(1:

A, G eWaW; (4.20)

33




W= Gom (&%, 70\ D4) (4.21)

W= Con (&, T01\0Q) (4.22)

vhere &en (#,&) denotes the connected componet of & which

contains tA. Then
nee,o,0;s)« Cew['w,,ﬂf\ Poa, o, L] (4.23)
Consult Fig 4.1 .

Proof: When {1 and ﬂ1 are disjoint the theorem is trivial.

Otervwise define
Qa=Cen (], SN WEWSE ) (4.24)

Clearly Quv{lsc{l, . Let us change (0]l to Ni1):{ls
continuously and monotonically. A particular scheme will be
given in Section 10. Take 475630(47,€MW, (:';GDD(("\JMW

where €40 . For any 0<# €1 there exists a AX>0 such that

L, & QcAahi]c QiA) (4.25)







W;

I A




Then Theorem 4.2 is applicable to

QethArat)c Q(#)

Qs = Lom [W, QBN (G, , B, kN ]
Thus

or equivalently

(K1 c Qg Hrak)

(4.26)

(4.27)

(4.28)

(4.29?

We have just proven that &(0/cQf1] which can be written as

c,h[w,,xz{' \"(&%,6,Q1] > (m[w,,ﬂf'\mo?, v,2.)]  4.30)

Similarly

Con[Wa, A8\ P(8, 5, Q0] < Coml[We, Q8N F(5,5,00]  14.31)

Pormulas (4.30,31) combine into




Conlwy, A8\ P30, 0] < lon [y, LI\ PO, F 0] (4.32)
which implies (4.23).

Formula -(4.28) follows directly from (4.26) by a messy

computation or a consideration of the second variation of
.
Now let us examine internal endpoints.
Theorem 4.5: Suppose that 0,06116
Ocau, Qe (X &0 &Fe3Q (4.33)
&%.,9, 0,01, satisfy all the conditions of Theorem 4.4 plus
NeA o, Qe s (4.34)

Then

Memy, Dyc bon (W, Q8N 065, 5000] (4.35)

Cl(ug,Ne)e O\ Con [ ] (4.36)







Fig 4.2 .

Proof: Theorem 4.2 is applicable to

QC.().nﬂ,_

Q<[ Fa W, 8\ %5 Q1]
80

_p((ﬂ,(}, -a"' 'al) <&

Crtue, Qafly)ec (Qal N\

Define

R(%1+ Qq\ Conl 3ﬂ¢,.ﬂf\ NCu, g QINNtu v, Q1]

XA e Qo\ S Wy, n,‘\ Crug, QINcnrup 0]

where €' is the continuation of /7 beyond its endpoints. See

(4.37)

(4.38)

(4.39)

(4.40)

Let us monotonically transform (1/0):{lafly to (L(1)=N4.

(4.41)

(4.42)







as in Fig 4.3 . The perturbation argument which we have used

to prove Theorem 4.4 shows that

Retra?) > R(A) | (4.43)

L (Arat) > X (4 (4.44)

We had to use the fact that the boundary endpoints of
CNiu o, Q0f)) A, Feh are in QaT04 . This
- »approach cannot obtain (4.39,40) because when Qef)  is
shrinking oh O] may get in the way.
Suppose that (4.35) or (4.36) is violated at “"time"
but not before. Then in light of (4.39,40,43,44) the total
geodesics T/[uuy, 40017  and Tr(e«si=0ca, 9,42

intersect at a point different from ¢, ¢
wWe[ Trewo, Q)aTr (a,u, QA1 ] \ {4, 0} (4.45)

Suppose that (4.36) is violated and €/ [u w, (L(A1]

(otherwise exchange #,¥ ). Then

N, dth]c(Qafly) \NQ (4.46)

So




Rtk p,wic (Ra05)\ & (4.47)

where R(X,0,45) denotes the R of formula (4.41) with u, ¢
replaced by ¢,4¢ . Formulas (4.39,43) imply that when (& (I,

ReA,9, 000 > R0, 8,4 & C\Q (4.48)

which contradicts (4.47). Thus (4.36) holds for all 9sf<1 .
If (4.35) is violated and ¥¢/7(u,«, {l) then

crfew, M1 &% (Y (4.49)

which violates (4.36) for ¢, 4 .

The next result helps estimating ém{ro[u;,ﬁm-.,a,)]. a

quantity whose importance will be seen later.

Theorem 4.6: For any 4, ., ¢ye{l there exists a (ef)

such that

éwfp[u,mu-,u&)]u%éﬂ(uﬁ) 1¢ Jedi3 (4.50)

Moreover for any ¢efl]
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{ 4;“{/[“:,,0(««.,“1)] -p e, 00| €

S mer ¢ ©, Nuj,u)l
1(444(,{3 4‘{/[' Jr 4

(4.51)

3 e




B el

S. Derivatives of Conformal Mappings.

We have already seen that the dependence of the
transformation / on the domain (] is pathological. The
correct function to consider is A'auo/(wf/,.(l) . Formula

(1.3) gives its real part and implies
IA(zM((u,a,.m/ +200.0)-bn Flu, Q) | ¢ fns (5.1)

We know how to estimate F and will learn how to estimate lﬂ
but the two terms may cancel each other. When uffﬂ they are
bothoo . In order to get a useful formula we apply (5.1) at a

new center- point «gef{l , subtract it from (5.1) and obtain
¢
,'Aleu/fu,-n [v-v’?ﬂ/v.w { N
1 [pw)- pos,0-pru o] + b 1¢ (5.2)

the point n+ is intended to be near the geodesic connecting #
and . Clearly

P01~ D1V, 8] P lu, 08) € z«l»//[u, rewo1] (5.3)

The distances [w-#] , Jw{lu-‘aﬂ.l should be of the same
order as the local length scale of 2l . The term -1714,4) is

63




o, T

A -

interpreted as the "global shape" contribution to

ﬁnl‘a.,. 6(0,@;1 and ln [ Y 6(«,0)[ as the "local boundary"”

| contribution. That division is fuzzy at best. When (1 is

concave near {A a cancellation is unavoidable. For example

consider a half tube ending in a cone of angle «

-3l (it , [Arg 31< %} (5.4)

and let “<9[fl be near the central corner and { well inside

el

s

‘%
‘T

u=ce 0<g <<y 7 u>1 (5.5)

If «# is chosen asccording to the smallest length scale

! w=¢ (5.6)
t
Ll 2w ftapr| < Bn &+ G101 (5.7
Aoz T+ ;’:-/u% « 011) (5.8)

It seems we have gone too close. The “correct" &+ is




-

We=1 , (5.9)

AI‘D«{W.H;I < (1-%) bt - OC1) (5.10)

prowsi= L v+ Ol1) (5.11)

Notice that when the corner is concave «>7 the local
contribution is positive and cancels some of the global
contribution. But the local term is only logarithmic in ¢ .
Theorem 3.4 can be used to estimate ﬁal‘a«//h,ml .
The simplest comparison domain is the inside or outside of a

disk:
{={ Dre,a) 270 (5.12)
e\ neo,-a) 2<0 (5.13)

If «A is on the boundary and w on the internal normal at ¢

“eAD(o,1a1) , a=EL>o (5.14)

VAN A S




then
IO«KW u,.ﬂ,){; - -;t _ (5.15)

ey U-l

Let us consider higher derivatives.

Theorem 5.1: For any M,U,MG_Q- ; N1

o a“,{w,-){‘:’ = —ZA[?‘_!;’_:_:’T‘/W'M] -

-’Lﬁ\ 'w'w{/(@,w + £ clO,W) (5.16)

' =m
2% Lo, {r« ST E z(M-z)! ,m] .
nl

>3 lt o [ /m m] (5.17)

fv "-l"\

n\
Lnm ={'CV)'};':1 | Yj¥o gv,'ﬂ'? ,;iVj”’"} (5.18)

Proof: Pormula (5.16) is obtained by taking the logarithm of
(1.12) and inserting (1.4). Pormula (5.17) is (5.16)'s n'th

derivative.

T o it -




If we set A#=U in (5.17) we obtain the n2%{ analogue of
(1.3). It suffers from the same cancellation problem. Notice
that the only (+ dependence of ‘c)z“ ly\bu /(«,0} as expressed
by (5.20) comes through ,0) . The term in the square

brackets is bounded as follows:

Theorem 5.2: For any u,os.(l

_ - - ~1
..é. moar | 1k 27, i-e‘70] SIFi_U" -/{q,ml <

¢ -‘,;(e"?*i) (5.19)

where

7= vnf plw,rtu o] s,o:pw,m (5.20)

The proof is an elementary exercis involving
Lobachevski's geometry.

What have we gained by replacing ¢ with w? The point
4+ is "near™ @« so the localization theory of section 10
allows us to approximate o G 2, [( u,w, ) by
A0 I 0 J(M,u,.ﬂ:) where (I equals (L "near” ¢, #+ and
omits the rest of the domain. Thus ﬁ is relatively simple.
How to estimate Ow Jf«) / ePUA 3«5(«;?

‘




Theorem 5.3: For any hysﬁ the following functions are

analytic in ue(l

?(a,w,ﬁ:}: A%)

Liaw ) - ¢[,L D,./(«,o,ﬁ') - ?(«,u,ﬁ)]

and satisfy the boundary conditions

Rt?(u,u,ﬁ) Ljoa-w ued

Re Ataw, By = ©(u,u, 5) uedQ

vwhere 9(«,0,35) is the angle of the outside normal to -5‘\

at «4 relative to the straight line between wt and ¢ .

See Fig. 5.1 .

Thus we have two basic Dirichlet problems whose

solutions and their derivatives provide all the functions we

wvant. In particular notice that for «e 3'.(2

(5.21)

(5.22)

(5.23)

(5.24)







AI%/f«.N,ﬁIh% Aia,w,38) < b |a-w) - (5.25) i

Problems (5.23,24) are the first two in an infinite series
whose third involves 5?1"5 curvature and so on so that the
N 'th problem involves the first A-{ deritatives of l and ﬁ

3. The fourth problem onwards can be chosen to be

independent of w .

The theory of elliptic boundary value problems is {

el A e o ¢ b e -
Py

applicable to problems (5.23) and (5.24). It is covered in
overwhelming detail in [ J. Those details shouldn't obscure
the fact that the bounds obtained are quite bad. For instance
consider the conformal distance pfw,u,_ﬂ) « The weakest
P.D.E. Theory's restriction on (Il is the cone condition: for

any 9<{l there exists inside {1 a truncated cone 8/¢) starting

at ¢ of angle « and length WIG.Q—D.[Z[

e WL e ol g K0 0 AN WO Ay i ¢ 5

Vsedl J @rerc Q (5.26)

This is not enough to bound ,a (since bottlenecks are

possible) so we must add a mild smoothness condition such as

1/ .
[mylm-ml %( K*(3,32) 1431] ‘<a (5.27)
Q




where )<{3,5'.Q) is the curvature of 30 at Z . The best/ﬂ

bound we can expect is

Wﬂo‘-\{/[&(«n,&mr,a] ¢ Cleu,al (5.28)
\p'e

This bound is far from trivial. Notice the subtle way
condition (5.27) combines with the cone condition to prevent
bottlenecks. However it all seems quite irrelevnat and there
is no lower bound. Compare with section 9. A possible basic
deficiency of the P.D.E. approach is that (5.23) and (5.24)
are very special Dirichlet problems: their domain and boundary
conditions are strongly linked.

Here follows a result which seems well beyond the power
of P.D.E. Theory. For any two points w.,6 4#; on an open curve
P define «(ys,¢,, P) to be the change in P 's angle between
#y and #,:

APy
(81,43, P)+ Arg —ZD(_’:;J; (5.29)

Theorem S.4: For any «,v¢(] , g¢ N
| Arg 0 frn L)+ (&5, TONCGN < 4T (5.30)

where &, ¥¢3Ql minimize [®-u] ,[J-¢#] respectively and /




is normalized so that 9y {((},0,.('1) >0 .
Proof:

Ava“‘m;:,ﬁv 31({,.,,;’+ h 1; . U [; (5.31)

For any i, we(l

An7 91{(.7]“‘:: = :Z,w" U,'ﬂ)sg[/(A&J,/f‘\’-;),[)f(],ﬂ] (5.32)
whe:e.

Z49e, b0, (1) = [Wg, 000, M (1e, 04, Q] (5.33)
For any 3,,3,; Do, 1},

’2[31,71,[)(0,1)], < T (5.34)

«[0,3~, Dlo1)] = 0 (5.35)

Theorem 4.2 implies that

T

p(a-,.,.,_mcp(ﬁ{_':'.,,f?f-“, ) (5.36)




and of course

Reen,u, ) L 20(n) (5.37)
SO

| &(&,q, L) ¢ z (5.38)

and a similar result holds for ii{} . Moreover (5.37) implies

that
XX T, Q1R F,TANE) =T (5.39)
where the sign depends on c7's location. Combining it all

together gives (5.30).

B |




6. Extremal Length.

This section presents an alternative to the approach of
theorem 1.1 towards the estimation of conformal invariants

such as p(u,(}) and the modified harmonic measure

I(W,«,ﬂh»;.vh[-}r—a&yy«/(W,a,ﬂ)] (6.1)

[ 3 A .
For any set C of piecewise continuous curves ¢ its

extremal length A(S) is defined to be

2
ond (G143

N(S) = W[f:g" ] (6.2)
%0 ”{"(xu'?) /w’y

-~
C
where the metric scalar functions )Z are smooth and not

identically () . Clearly A(S) is conformally invariant. It

is easy to show that:

Theorem 6.1: If $3cS,; then:

A(S1) 3 N(Sz) (6.3)

For any Si,S2

AS19S,) 2 NSt N(Sy) (6.4)




M Siv6al ’/[)'I(S"z)r)fl(&)]‘i (6.5)

Bach § defines its conjugate
S*={pc.cimn P | ¥reS Parx(}] (6.6)

All the § 's which ve are going to discuss satisfy

¢¥r-C . (6.7)

M(S) NES¥)x 1 (6.8)

The latter property is of considerable importance because it
enables us to bound X(S) from above as well as below by

using a single *Z

o i) 4
["‘9 A 3”6{3'] £ N(S) *M ikt (6.9)
g*z’(xn'?)hdtf [’“é f’Z’]JId’

Let U,V<cl° be two closed sets. pefine S{V,V,{1) to

be the set of all the piecewise connected curves connecting U

and V in (

=

Sy




SWN, Q) <{pecant ' | Un Con [V, ra] 5{ } 3 (6.10)

o
The conjugate < /(/,V.ﬂ? is the set of all the piecewise

connected curve separating {/ from V in (1
CHUV Q)= {p.c. ot I'| ¢ alon[V,ANP1=(} } (6.11)
We will abbreviate
MoV, Q)= 2Scu Vv, Q] (6.12)

The standard exampl_éé are

4

A<to,a), b+i(0,m1, (0,b)04t0,m] = == (6.13)

Mo0(o,n1, 309,81, DIO.RINDUo] = = Z, T’f_ (6.14)

The rectangle (6.13) is the canonical domain for U,V e 3'_(2
connected curves. The annulus (6.14) is the canonical domain
for {1 doubly connected and 9L :VyV where U,V are

connected. These two cases are related because an annulus

minus a radius equals the exponential of a rectangle and the

missing radius is in S/¢,V) and miniwizes (74,]”"5’ for
rl




the critical metric function so its absence doesn't change

b MU\ V) . More generally

M[aDo,n),20(0,R), DO, RAINDTO, MR ] = -;er' &n ,—'.f- (6.15)
&=y & [a;,R] 0¢<;<2T , nsa;<R (6.16)
4

is the general domain for {1 doubly connected, im:v.,w , V.W
connected and UcW ., Situations (6.13), (6.14) and (6.15,16)

are illustrated in Pig 6.1 . For more details see [6 ].

Theorem 6.2: Suppose that ok {l, Then for any u,ueld

Wcm connected and 0<=.4 ¢ -17:-

I)(D(M,G)IQ-Q]*:L%A[ZFW;][ €C (6.17)

[ Mo, wl-Nn(wa,30]+ 3= dn Low,0) | cc (6.18)

').[Dm,m, DIU1] - 2D (21,307 -ND(9,4),200] ~

-%.-A[{-szm,w] l § C (2] (6.19) ;







Azt NIA) z(,=/enw) (6.20) M

Moreover for general Weidl,

AD(u,2), W] =-2[0(0,2),30] + -,,’r 4. Ifw,«) € C (6.21)
The limit -(,,JJ,O formulas hold also for (1 ader,
Proof: Let us start with the e(.,d {0 case. Then formulas
(6.17,18,19,21) are obviously conformally invariant so we can
choose a convenient geometry. For (6.17) we choose of course

L=DloL) |, wns0 (6.22)
for (6.18)

- &l
0+000,1) Wzt I (6.23)

and for (6.19)

A -
NCN\[~xm,0] |, vou:1 (6.24)

the computations are trivial. Formula (6.21) is harder.

There we choose situation (6.15,16) with R=2{ ,n€40 .




Because of (6.15) and (6.18).
Mrug), W] - ol ,20] = %r NI (6.25)
so we need only show that

(6.26)

l’-(w,m ¢ =2

E(u)

which follows from Theorem 10.2.
The finite -(,/g case is proven in the same way except

that when transforming Ll to a canonical region {! one must be

able to bound the image of O(u «nfm] from above and below

and the bounds must agree asymptotically. Those bounds are

provided by Theorem 3.6. They immediately translate into P

bounds because

U, Ve S¥(Ve, Vi) = MV Va) €%(V1, V1) (6.27)




7. Internal Metrices.

It is time to define a geometric distance between any
u,0e ]l . The Euclidian [(-¢#| is not satisfactory because it
can identify two different 3l points, or even [l points for

multisheeted domains. The natural candidate is

At 0,001 = M (131 (7.1)
2eCSlu,0, ) 2

A minimal curve will be denoted by 2Z2(u ¢, (1) .

Theorem 7.1: For any #,¢eflxon Z(u,¢,fl) exists and is

unique.

Proof: Existence is well known. Let Z/«,¢.{l) be a minimal
curve. For any 3«2 there exists an €>0 such that either
36-0. and 220(3.¢) is a straight line or 363.12 and 21 002€)
is concave relative to [). For almost all Jei a tangent
exists. Define Wfa) to be the largest inte‘rval of the normal
line at 3 which is connected to « in (l:

Wig) Gov (3, L1 Ay (-, (1] (7.2)




Vg = Comlu, 2N W3] (7.3)

The local concavity of Z implies that as 3 tends from “ to

« Ula) increases:

220300, 01 2(0,0,0) =) Ul501< V032 (7.4)
It is easy to show that =¢{) implies (¢ U/J] S0

U2k NORTHN (7.5)

Suppose that Pe Sy, L) . Because of (7.5), for any

3;2(«,0,11; we can define 3(3) as a point in
Prpre Paws) (7.6)

o

go that P is a piecewise continuous. Formula (7.4) implies

91330 => P07 Fraa) . a.mn

and because of the local concavity

ng:’éll > 1 (7.8)




thus
W P Atuu Q) (7.9)

Moreover for equality to hold P nmust be parallel to Z at
2 's straight parts and identical to 2 at the strongly

concave parts. That implies that P is idenf:ical to 2.
The A disks are o
Dytw,a, L) =(Fef| Alog, L1« al (7.10)
They are strongly convex relative to Q.
Theorem 7.2: For any .U, u¢ Dy(w,a,LL)

2w, L) e Darto,a, L) U [IDg0 1N L] (7.11)

Proof: Suppose that pe 2(n,¢) . Parametrize Z,= Z/i)«n),
2= 2N 0) by 0¢A<1. For each osAc1 define Pr4) by

Prt) ¢ 2[2ul#, 2olh1] (7.12)

AP, 2ath] = A [2ulh), 2o(#] %%"— (7.13)

L1 ittt
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It is easy to show by a polygonal approximation that

- Arp,v) A
luP("’l\<7,-/37,,’3*?«(”'l* {M'U;ID#Z@HII (7.14)

and formula (7.14) integrates to

Acp, ) (p,n)
£
d"\’:fl\ («'wd(w,w-r m’wa{/m,op (7.15)

Equality can hold only when ¢e 2%(us,12) or (€ 2%w,u) because
otherwise (7.14) is a strict inequality near f:¢ .

Inside {1, 9D s curvature is limited. In particular

Lemma 7.3: For any (9‘.0., ar?0 , Ue Dyly,afl) there
exists a wWeJIN(U,X) such that

DN,E1aD(NX)c Dyt1r,a,Ll) (7.16)

where

&= rum [a, acu 1] (7.17)

Proof: Define




(W= 2(46,Q) 03D, &) (7.18)
then for any 560(“,3M Diw, &)

a(w,; )¢ o/m,mwlm.(;) =dgu) -?a"rdm,J) <a (7.19)

Theorem 7.4: For any (#¢{l%e , ayn(v,dl) ,(Asﬂn?).Dd(a,a,[Z)

there exists a curve W such that

We 3D4(0,a L) , WeS(4,9Q,Q2) (7.20)

1 ¢ —Zongth W/ < 17 (7.21)
m{ ALu,204(0,2,0) ]

Proof: We will assume 3):Q to be smooth. For any
36‘204(@,0,.(1)0.(1 define ffa) to be the first 2(},(9,.(2)
point in TN if any, or (¢ if none

pipe [3(3,0,.(2”37.(1]0{0} - (7.22)







*AD=A0Y98 007 MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF MATHEMATICS F/6 12/1 :
THEORETICAL AND NUMERICAL ANALYSIS OF CONFORMAL MAPPING.{(U)
JAN 81 M DUBINER AFOSR=-77=-3405

UNCLASSIFIED AFOSR=TR-81-0392 Nt

lil..llll...ll

__m :




(3Pl

Define

M = M/[;,Dba(a,a,ﬂ) \ ]

7(})6?0‘(0,&,.0-)\[2 , '{[-3'7(5”'07:/“9)
Theorem 7.2 implies that
(319 < Da(0,a, ), uig=190p-71

1f /ufj)sa then

%‘)ﬁ%-lg(o,oc)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

Otherwise p(a)z 7(a)¢a so (a,p(a)) is tangent to 3.0. at

p(3) « Then either Ars,qe.01<a  so (3,903

perpendicular to L at 7(3) which contradicts the tangency
or Afugm.Q]=a  so am((;,w:d[';,q(aﬂ*ﬂ(l'qf;),j] >a .

Suppose that




. /,«wsa (7.28)

Define W to be the curve which conneects ¢« to 9. in 304\ L1

and starts in the general direction of 7rw-u

A PR (7.29)
qlu) ~u :
The curve 3‘0,1\.0. is perpendicular to (q(«), ) at gfu) so
(7.27) for 3:44 implies that (7.29) uniquely determines W''s

direction. For any }sW define

4
G((J): -A*?#lg—

Denote o 3 =d W'i « Clearly

«(3:;0 : (7.31)

/A(dea) $ l;drq(yl:

=/m))'~meua) . d; + O3] (7.32)




B 41 bt i 3 i s 22 851

%}1 $ - Zmaly) (7.33)

q(rda)s DCQ’JJ'/“‘J"'W \0(3 M (7.34)
%(i(}l & #m oL(3) | (7.35)
3 / |

We claim that for all 56W

/M(J) £a | (7.36)

<3< T (7.37)

FPormulas (7.36,37) hold initially at 3=4A . Let JGW be the
first violator. It can not violate (7.36) because (7.33)
implies that /u(;) is monotonically decreasing up to ; .« The
function 7(3) is not uniquely defined and «( 3) may be
discontinuous but (7.35) implies that any jump up to and atj
decreases « 80 -((})=Ez which contradicts (7.27).

For any J,MGW




3#N = (3, 91 A (w,gwn = } (7.38)
Suppose that a@a} i.e. ; separates u from w in W. Then

the line (3,7(3,) separates ¢« from w* in {1 so it separates
2,4, ) from (w,q(w)) in a

(3:9(31) € S*[u, (W, 9000, Q] (7.39)

Thus for any «i€(W,q(wl] 2(U, %1, {1) intersects [34‘7’3’]
at some point 31 so

A (34,00 <A1, 00)- d(u,}u ca-[a-d(31,3] (7.40)
AL(3,39:1 € A3, 321+ A30,3) = 2] (7.41)

(W 9(w))c 04[7(7"/“’3"1” (7.42)

Thus

Tigre { & uw) sonatin iy <
voj

< Ansg U/ (88,908) € T Y (7.43)
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Clearly
.‘!’(_\JITBT z —:V&r?:’: 44'»«.((;) < - 44"»1«((7] (7.44)
; i NI “F '
[ wnarndw < o7 (TT@ € 4T pin) (7.45)
wa})
Formula (7.33) implies
[ cos < dv ¢ pra) (7.46)
w03
; and Amu+Znd 21 SO
st (4T 1) Ml (7.47)
We are still left with the case
Miu>a (7.48)
Define A1 to be the endpoint of
P=Cen [, 20(6,0)\ Dy (U1,a,00)] (7.49) ]

bl R

which is closest to #4 . Clearly /A(Mz)aa so we can start Wy

from {; as before. Define

1
g
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W:Con [y, PEN{ul] @ W, (7.50)

Then

WWs Thlu) e (GTet) o < (S Tet) M(4) (7.51)

suppose that o, ¢, wef]l . The u,u bottleneckt width at
#r is defined to be

biw,u,o, Q1= sup  anf diw, P 0=
P‘S(M'(’p-a)

= 4470{36)0 | e CGon [0, AN (v, 6, ]} (7.52)

Theorem 7.5: For any u v, we Ll
b4, 2= e[ Rtws, 8, Q) At Q) diwo, D] (7.53)

where

Btw, 0, L1) = meww [amff Al Wa, ) mf A9, W0, 2) ] (7.54)

e e——— S
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TANCA T} =W oW, commecrbol
and X, 0¢3Q minimize [-ul ,[{F-¢| respectively.
Proof: Obviously

N e DA, a, Q) & as mmn d(u,{g,o},.(z)

Thus all we have to prove is that when (7.56) holds

UeCon [0, AN\ Dgtwa, )] & a<Bw,u,uv,0)

Assume that

ay Bw, nu, L)

(7.55)

(7.56)

(7.57)

(7.58)

Let Wic WS, MeW, minimize d((u,wz,m,d(w,wt,ﬂ) respectively.

Clearly

Q* 2(ns,w, Q)8 2(w, i, L) cDAw,a, )

s0 it is enough to prove that

(7.59)




Re S (uu, Q) (7.60)

Define
P=(u,K)@ WL 8 (5,01 €S (anu,) (7.61)

the line («, ! can not penetrate Zc(m,wj,.ﬂ-) because they
both minimize the distance from a point (¢4 and «t
respectively) to W) Thus P penetrates Q° at exactly one

point: 44;. Hence P's endpoints ¢#{ and {4 are separated by

.
Assume that
a<Blu,uv Q) | (7.62)
It implies
A< o o (v, Wy, (1) (7.63)

where Ws, W3 have been switched if necessary. Suppose we

could prove the existence of

P1¢Slu, & Q\Og(w,a,{11] (7.64)




Then there also exists P,<S[G,u,n] so

P1O8W,0 P, ¢ S Lu, ¢, Q\04(w,a,Q)] (7.65)

The continuation of Z(w, «,{l) intersects 30 (u, Niu, Q)]
at a point p

;oc:JD[u,n(a,.m] . e z(w,F,.a) (7.66)
We claim that if 3e30[« Mo, D] tends to p so that l&-p[
monotoni.cally decreases then d(u 3/.Q) monotonically
increases. 'rhe reason is that a stationary peoint j is
characterized by

Z(v,g,m L 0l At Q0] wf; (7.67)
in which case either

ue Z(M,J,-Q) = 3:p (7.68)
or

je 2w, 0 dl) = 3= 2a-p (7.69)

Define




P1=(u.;oma (7.70)

where & is the shortest 9D [u,nru (1) ] arc connecting p to

A . Consult Fig. 7.2. Clearly

A»/aﬂw,&.fln M [dow, u, 1), dews, %, Q0] 24 (7.7D)

S0

o

PreS{a ¢, DCu,uuan\Dp(w.2,0)] (7.72)

which implies (7.64).

Eopret-var ey yvrre

In Section 9 we will need

Theorem 7.6: For any n,uell ' ws?(u,u,ﬂ) there exists

a unit normal ﬁ(w,u,v,.ﬂ) to Z(M,U, {l) at wr such that

DLw, b(v, 4,0, LI [w Ay L) D] < 2 (7.73)







0 plws, btvs, 0, 0,001,071 1 20w, 5,01 <

< W-Alug,u,0,0) D) (7.74)

Proof: Let

direction. It exists because 2 is concave relative to & .

i

H

Pe Stn, 6, DDy (19, b, 2] (7.75) ;

A A\ c‘ ‘;
Q=C\ & [E\Q,ENP\N2(11,0,1)] < (7.76) ;

Define M(w) to be a normal to 2 at «! in the inside & i

Suppose that M eA (W) D(eo) , M1=1 . The line (4, w+ites) is

initially inside 2 . Define 9 to be its last point in &

ge (W, WMo ) ATR (7.77)

(W,q)c& (7.78)

Pormula (7.78) implies that




q&ra\ 2P (7.79)

Atw,q, 81 >4 (7.80)

(W, 0+ b)c (w91 ce (] (7.81)

which proves (7.73,74).

Lemma 7.7: Suppose that ¢, Uefl, weZ(lu,u Q) and

PFCO"[‘VI(-QI'[N¢3(W)D(-M])va}] v

v Zgn[u,(ﬂn[w-ﬁIW)Dfdi])V{ﬁl}] " (7.82)
Then
A[;o, 2uu, Q1,017 > ’R‘ﬁ, : (7.83)

Por some purposes the neighborhood 5@4[0, D(,a)4 (1]
is preferable to D,l(v,a,ﬂ) . It is approximately generated




TR J

by the metric

do(u,v,ﬂ;ﬂfv{{mo[soeé‘ Uue o[, 00621221} (7.84)

Clearly -

- 6] < do(r,0, ) s At 0, Q) | (7.85)
The A, disks

Po(9,a, Q)= {3601 dotv,3, )20} (7.86)
satisfy

Do(v,a,LL)c Can (18, D19, 0100)] < Do (v, 200, L2) (7.87)
By now the reader should have no trouble proving

Theorem 7.7: For any #,ire¢(] }oo

a(o(u,v,ﬂ)ulw{faw/?ose 200, 2)c D02}  (7.88)




8. Barmonic Measure Bounds with Applications.

The harmonic measure (W(W,u,f)) of a curve Wcdoll is
defined to be the length of its image /IW, u,_Q) 80 it can be
usea to approximate the image size of some Ll subsets.

Theorem 8.1 is a localization theorem. It implies that
the harmonic measure is concentrated at distances of order

nu, L) from the center.

Theorem 8.1: For any ¢eQ , WeS0

2

Liw,0,Q)< =

(8.1)

g1k

s Snfdiw,0.Q) a’,’;"’f)_‘,"m (8.2)
the inequality is sharp.
Proof: Normalize

6=0

, Ao, (8.3)

In light ot Theorem 1.2 we can assume that




o A2, v) ==
Theorem 6.2 ;mplies that for ¢l9¢0

MO(©,5), W]+ _:-%A[FF(W] + -T—',.-jn Lew,a) sce
We choose the metric sca:lar

1
“n)=
'Z( ! A(jun) ue

Alx) = M [’JDJ(O,XM.O.]

Clearly

§( 'Zl(“"‘ﬂ’ Ax 'fg gT‘L

and for each Me¢ < (Dr9,6)/ W]

To‘v

4

A3l >
}_‘rL{;)I jl

Thus

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

- (8.9)




“ ]
200,51, W7 2 f%‘-' (8.10) *
E '

Obviously

A0x)e 27X O¢xst (8.11)

(,grf;df = Anea [QpDgito ] € Tx2 (8.12)
Q

It is easy to show that (8.11,12) imply

o
J* > _}_ ol
E ) 7 T l"l—e- o (8.13)
80
1
Mbwg ,wl» = o £ (8.14)

Because of (8.4) Theorem 3.3 implies

Z
(1+ L) (8.15)

which combines with (8.5) and (8.14) to give (8.1).

With a little extra effort we will prove another result:
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Theorem 8.2: For any ¢{l%e , We 3N

Liw,0,Q1< BT e Younlad 4 4o VI (8.16)
ot th(/u,a(; <

s Q{JA&M (8.17)
neo, L)

MCRMLg_oeC“ weDl6R)Y . wplW-W|
: : (8.
S YT Y S aneq) 18)

Proof: Normalize as in (8.3). The case M follows from

Theorem 7.1 80 we assume
/ﬁ‘ - (8.19)
Theorem 6.1 implies

MoD(0£3, W 0] > NoDlgs), U, As] +M[W, Vol L] (8.20)

A= Dglo, 2, 01\ D(o;€) (8.21)




Upe(ue Q| A0, 01 224}
Ax(ued] «‘f Aln,w) < 21:,& |3

Ualx) = {w.ﬂ.! v'v\{d((u,wl s X }
As in the previous proof

4 v
)[O(O,ﬂ,(/g,./til y T jm ;l?ﬂ.

mo’
)[VV,Uz;ddzl > Jz 2?§7

A0y - 2.74-! Z1& ¥

b4
( Acp) o/)v s Txt
M

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

We have no anologue to (8.11) so we have to be content with

the fact that (8.28) implies




R

X

(8.16).

Ax

—

x)

endpoints in [}.

1 -ty
y = [4n Tf ~(dn2-£1]

The combination of (8.5), (3.7), (8.20,25,26,29)'resu1ts in

distance it has to as a curve connecting the geodesic’s

satisfies

and if oo¥x .l

Corollary:

b0 Q)< (2531 iy, Q)

Md[a,?m,u,m.ﬂ]s 19.2 dy(mu, L))

Inequality (8.30) is sharp.

For any u,U,we (]

(8.29)

The next result implies that a geodesic doesn't approach

or depart from a boundary point more than a constant times the

Theorem 8.3: Suppose that ¢,v¢fl . Then any 3€rVMM&JZ)

(8.30)

(8.31)




Nge A, 0] @é AGs, oty Q). 01
0.14 O.KW < o €1 (8.32)

} bluy, 0, L0

and if ook .0

. /[vl/’(“'{’,lﬂ)lg—]- °
1¢ %M[u.f«.v}.lll <39 (8.33)

RRT ra A~ NV T mem———

Moreover (8.32) and (8.33) hold with o(,é replaced by &/o,fé .

Proof: The goedesic /'(u,,{l] extends to T/'(u,0,[) whose

endpoints &, J are on the boundary
(& 6,20 T 0, 21 | (8.34)
Por any £>0 , ¥«1 and ¢ are connected in
Auﬂ\D{[Z,é(JM,U,.Q.)-F.QY (8.35)
Define ¢; to be the first (¥, u, L) point in A
P(Rug, L) I\ AC

L.
, e A (8.36)

and similarly ¢y . Define




Ly QNP U, LIN P00, Q) (8.37)

Clearly

3cn(«,u,.0.)c M (1,19, , Q1) (8.38)
b3, 10,0102 H13000,0, ) - (8.39)
n(x,fm snrz,.n.w (8.40)

so it is sufficient to prove (8.30) for w,,(j,,_(),_ . The
points «,,4, split JL4 into two connected parts

VN, 01} = Wy v W, conmecfed (8.41)
and one of which, say Wi , 1is at a distance »6 away from ('}J
‘:V\{ﬂ((‘},w‘,.ai)aé(j,ﬂg,(}('ﬂ] (8.42)

Because of (8.38)




Lowy, - L .
( z,a) = (8.43)
Thus Theorem 8.1 implies that
t ¢ % (8.44)

b T
= TR
which proves (8.30).
Now to (8.31). Define «; to be the first MR, a0, )

point which intersects Z(u,u,{l), define ¢; similarly, (Il
by (8.37) and

Qy= Con[3, Ao\ 20,0, 0)] (8.45)
Clearly
A 6"{/[3, 2y, 01,221, N1 ] z«»’-{d{}, 2uu,0), L1 (8.46)

and Theorem 7.8 implies that

do= Aylus, 92, () € Alw, 1, ) (8.47)
1 .
M;,ﬂ«,)sd*ﬁ Ay (8.48)
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Because of Theorem 1.2

1[2(“1'011.0-1)/3, -Qz,] 3 \‘—i‘[

and Theorem 8.2 proves

1 M—}_da(d*éda)
T T AL,
-s&"iq.il

We have already seen that the conformal map onto
can be extremely contracting. However there exists a

reasonable bound on its expantion power:

Theorem 8.4: For any u,{f, e (1 xeo

1-15(«.0,.(7-” 3

d(ulu,n
Vmu 1, 11

' 17
ll/u,u,.m-o’m,o,.{l;[ e
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(8.49)

(8.50)

(8.51)

(8.52)

(8.53)

ol N o AR A AT Y
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S

s %ﬁ, 20,001, 0]
(w0, L)
Obviously

Ao, 9.0 Alu,9,. L
ot ;fﬁ-diu_L. A
LAty ' Alu,w

Proof: Clearly

d’“:‘ﬁ-&h A 0
i X . (v, il
F(MIU,-Q)‘) Z § m = %lﬁl’ml-;— -r‘.]

which implies (8.52).
It is easy to show that

2 famd £

10/("'""&"/(“"""&'/5Mﬁ,wﬁw{z{_

where

,ﬂ-./m,u,_(l)

ﬁ:d-{/[ﬁ(u,w,ﬂ), , 2]

Let ¢ minimize owflo- 2(u 4, L1)| . Assume that

(8.54)

(8.55)

(8.56)

(8.57)

(8.58)

(8.59)

P AN A




a0, Q1< 3 dolu,w, Q1 (8.60)

Theorem 8.3 implies

ads y
1 X { X+ 4
,2‘§ zm(z x,.thI,LZ; % % j"\ 0.2 (8.61)

80 ;
2
£

4 4y20.1 §
)~ fiw) | € & .
lf ) / R e (8.62) i

Now assume that

J"L(O:-Q) > l

T R

/“Engaﬁzzf) 2 (8.63)
Theorem 4.2 impies
-
"' i d% - LA PUBPIT &
74 ;(, xr+ldy T 4 e L (8.64)
and obviously
/’d¥
,a< 2 = zla\7fgf- . (8.65)
z

Thus
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f)tdv\{é FiA- ) 1
{ - ~ ~ /- [ ]
l/w /(ml< r pti% oy (8.66)

Theorems t.l,2 are applicable only in special situations.
The Tunnel Lemma is much more versatile but it may give

ridiculous numbers.

I.euima. 8.5: Suppose that (< , v¢ n , ReS(n,0, ) and

a>0 - Then

_rArad
LAaT0,02)> 2206 % (8.67)
where
A8\ Ceml>, 8\3:/":1)(341] (8.68)

Proof: Theorem 3.4 and simple inclusion arguments imply that
L(AATR, 0, 0) 2 L(A130,0, A1) >,
>,1(W;,0,JL-,,) >//((W3,(},.A.3) (8.69)

where
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A= Gen (v, ALally (8.70)
W= Zenl(tt, A2 74) (8.71)
Ay= Gmlv, A\ Wy) (8.72)
W, = [Wan Dlo,a1]v [2D0maN A, ] (8.73)
Ay Lav D) (8.74)

Consult Fig. 8.1l.

Define the metric scalar function

:1(3:= mer(1 ) (8.75)

_a
! Wla-m

Take ¢£{0. Clearly

(( 'Z"(m'y)dx/y = Area Ay + ﬁ({i‘x)z- 1] arxdx €
th\of(’,ﬂ 13
1

20" a _a
< Mrea L+ ﬁv«;r—t———ﬂ— (8.76)




let
8¢ S¥[w, ,A0(w,51, A\0w,0) (8.77)
1f & 1is an open curve it has two endpoints
© 9219 ¢ I W c QA (8.78)
Because of (8.77) & intersects P at some point p so
5(! 103) 1931 > A(p,ge A) *dfﬁ',qz,J“ 224 (8.79)

I1f @ is closed and of length <724 it is contained in D(v.a)

SO
a
Ay » = Vm (2-0) 3 2a .80)
{rpidyrs 5 Von Ang (8.8
Formula (6.9) implies

1
MWs , 30,e1, A\DlY 1] € %—;4 ey -5 (8.81)

The boundary curve W is connected so Theorem 6.2 applies and

proves that




-,,—:_—A d([W;,U,.A.g] =

= -\[W3,30(0,6), A\D101] - 25 Sufe £l A3)]  (8.82)

Obviously
Flu, Ay s % (8.83)
S0
Yy - 7 Area L
Loy, 0,15y s\7 6% 6 4 (8.84)

We will use the tunnel Lemma to prove a relatively deep

extension of Theorem 3.6. For any ¢ uwe(l , #>0 define

J(M,a,u,.ﬂ) vmfl I/(D,((a,a,n;,o,ﬂ)[ - [/(u,v,.(l){’ (8.85)

Theorem 8.6: For any u,¢fe.( Yoo there exists a

complex ¢ "I*(i such that

’




. o)
D[e‘f&a'a ¢ /(!M", cidrwa,o] <

c/[DJ(a,m,u] c D[/(u,w,c.,d'(a,a,w] (8.86)

and for any 0« a<d(a,u,.(2) there exists a real -1<§<{ such
that

. ]
D[e‘ 1J(“'T'0)/(“,0' ' C'Jf«, %,(ﬂ] c
cﬂa\ Con (9, N D pta,a7) , 0] (8.87)

Proof: Let us prove the right side inclusion of (8.86).

Obviously

J(D/)‘Dfo,lo//mhi]\ D[o,t{m{-i] (8.88)
and we can assume that a< o(u,¢#) , Assume

.azn(u,.a) | (8.89)

It implies




I(DJ)C 0(0,1)\ D(0, 1-24) (8.90)

ALet
3t 3ue fr0d) ,/»7‘«35;:/“.“7,[,4,7%%5;/ (8.91)

, 8.92)
We (1%/[/(ﬂnb’0d)n(3!lb§%>o}] (8.9
Theorem 7.4 provides us with
We9Dd(u,a, ) , WeS(%,7309,4) (8.93)

which will be parametrized by its arc length. Define the

curve
Ps)s Weg) » £ A9, 0) 24W(4) 0<A <4, (8.94)

where P(4;) 1is the first point to reach 9. Lemma 8.5 with

" 8 -%-’n,lk}) implies that

_TAal )
1(55\‘511,/,,5» 220 6~ AT (8.95)

where
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E=&m(y, 2\ Dg)
f: P(O'

A=C\&Gn/[, 6\3({’,0(3, £a1]
Formula (7.40) proves that for some ®¢ .2

we 0(8, «f d(n, IANIE, 0]

Hence either (m{ d(fn)éll\fw) S0

A<Dle, 307

~ ~ - '7.
.((aE\'a.ﬂ,,ﬂ,E)s 2.2¢ eqr

or v’»{d(") > 2N 8o Theorem 8.1 implies

3

pa
G

Levy> 1-

By Theorem 3.5

(8.96)

(8.97)

(8.98)

(8.99)

(8.100)

(8.101)

(8.102)




l‘@%ﬁhllils-%

80

- 2
M(p,o)-{m,o)[ : I/rp.m 1f5!(‘§f(«’375';6m ¢
< i-tb’(u,wl"s )

Formulas (8.92,104) imply that

4'-0’/[0/(7:} p //5'5\’0’.(2) . /(E)] > {ef'»‘f-z | - Q'J

n[mm, f([—‘l] < 4ad

80 by Theorem 8.1

1[/('35\312),‘//(7), {(5}} “_S-T*zTQ

A A
"7

which combines with (8.101,102) to bound/d .

(8.103)

(8.104)

(8.105)

(8.106)

(8.107)

(8.108)

We still have to consider a ¢nfu,2). When as $n(nl)

Theorem 3.5 implies Theorem 8.5. Thus assume
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3 4 A
3 € R 3 (8.109)

For any wedD(ua)

4 % (8.110)

x
4
S
TN

a
Plu 5,213 -‘;i

In prticular we D, ara M(u,0, 12) proves

Ji,a,0, Q)% Aond(34n2)- T (8.111)

3*.-'1—«3»‘/[ ﬂ‘aom,a;, vl - (8.112)

Theorem 4.2 implies that p/[OIM,a)] is Lobachevski convex so

4
{{[om,m]ce' 200,114 D ()] (8.113)
‘ - xr2-4
2(WN = 15Ty (8.114)

The left side inclusion of (8.86) is a corollary of

Theorem 3.5 and Lemma 7.3.
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The proof of (8.87) has been left to the interested
reader. He should at least figure out why %a can not be
replaced by a (but it can be replaced by x4 where O<«<{ )

or { by 0 . The difference between f real and complex is

important when one is interested in J(%E\_Q,U,.ﬂ7 .




9. Estimation of the Conformal Distance and

the Location of Geodesics.

In the first part of this section we will estimate

p(u.u..ﬂ) by using formula (3.2) with the F bounds of (3.8).

Theorem 9.1: Por any ( ¢¢(l ¥ oo

0.01<T£%‘-'—— ,‘D" < 15 (9.1)

a(al“l 0,_‘1)
2u o, )

where

Acgou 0, = Moz [£03,uv, 21, 203, Q] (9.2)

Proof: We will prove the upper inequality by construction.
Define

X, Q)= [1-1+=C1A0] (2(00)) (9.3)
«(j1+ 5 [ary uv 1 -003,21] (9.4)

wvhere ar";) is provided by Theorem 7.6. The curve

ZeSu,u,L) and is continuous because N can flip direction
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only when fn¢ 6. For any 3: Z ']

8-0(3,mu[o(3,6m(3$ 01)] « (2 (9.5)

F'i(guﬁ,_ﬂ) ¥l i, Q) =Vn‘(J,-Q)+d" 2

;W[F';_-ar3,«,u.ﬂ) (3] (9.6)

Let us parametrize 2Z(u,« {l] by its arc length
<k« d(M,U,.O.) and for any function [J denote

B1£) = Q([20u,0.00104)) | (9.7)

Differention of (9.3) results in

b= ] -~ ~ ~
UR(0 = (215K, 2] <(4)) AT14)+ %L1 - Ails) (9.8)

where X(3,2) is Z 's curvature at 3 and f(z) is the unit
tangent at j . We have used the fact that when 34_(2
X(3,21:0 while when 35'3’.(2 R‘J’ must point inside ).
Obviously

-

K% ], 194Nl 12| € 4 (9.9)




80

I%ilé)l s\yZ+ | X (8] <(4)

which combines with 9.6 to prove that

d(u,v)w
Pl <€ ip(y 1dy1 S§ [}}T) *Ro | dg

We want to bound the total curvature of 2Z(¢, U, {1),

concentrate on the ¥ interval

Osa-’?&uux <4,’?aru

There (9.9) implies

Alx) » £ &)

Dd[2(%), % Fim] c Dal2x), &x]

80 by Theorem 7.6

2D 21,4 M) ¢ Z00~F(x) D)

(9.10)

(9.11)

FPirst

(9.12)

(9.13)

(9.14)

(9.15)

Hence for any two different Y4<X; in (9.15) either A(x1) #A (%)
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or Z2([¥%:; X,]) is a straight line. Thus

X+ H AR _
K& Ay ¢ (9.16)
£~ %A
Also
Jr%a"{) % @
| ﬂ‘ > 2 g 5 L R WA (9.17)
{ 2- R anx) ° “’f

We will divide [0,A(#,01] into intervals of type (9.12).

Start from X,:J . Assume that we have

0¢ xq cA-% Aald) (9.18)

There exist a unique 0<Af,, <4 such that

5 Lhos~ % A (8400) = %Xy (9.19)
i and it defines
Wint & heg * 5 A 24.4) | (9.20)

The procedure stops when (9.18) is violated by ¥m.

-

]
(9,41 =Lu (%4, X4es] & (¥, ] (9.21)
£ ]




-ttt e o5t o R A A AN Ot B9 it~ 3 b

B

i
.
i
i
]
i
:

Clearly
2((%n, A1) < D°(0, 000,011 (9.22) :

so 2((¥m,d1) is a straight line. Summing up (9.16,17) in 1

the intervals (Y¢,¥4.q] we obtain ’i
A ’ A g
o~ m d%
IR exi) Ay ( (9.23)
g e"% o avtx)
which combines with (9.11) to give
o
T A4
/(«.0,11) é(\iiow‘@h% ) £_a‘m (9.24)

The lower ,0 bound is proven by an argument slightly
reminiscent of our total curvature bound (9.23). We will
obtain {Y"}:Zt: monotonically increasing from Y¥,=0 to
Xmeg = A(u4)  such that

Bp=g -¥h) = (Ay2044) >0 (9.25)
where
Ay: 4 Alxg,uu, ) 1< <m (9.26)
Q 4‘:0, ms+1
123
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Define

2&: 2(¥4) (9.28)

D‘:{.z el [ d(g,g‘,ﬂnsa4} (9.29)

Pormula (9.25) implies that

Yp=Xy > Anrdy <k cn ¢ Mot (9.30)

DeaDy={Y L (9.31)

By definition {ul: D, , (0% =04 so (9.31) proves that

Gd= (34,000 > N(34) 14 em (9.32)

and formula (7.60) implies

Stav, AN )=(} (9.33)




Qe UV 2C43) <D (9.34)
4 qe 9040790 a 'J “

Thus for any Osjz.(<ns M+
z[(ol Y)"aj’]@ g(D.nDn,-a\&J @ 2[(“n‘4h,ﬂ{l]c

c Stu, e, IN&L) ={ (9.35)

S0;,0n, QN) =1 (9.36) {

Hence [T(u,0, ) intersects &y at some ¢, Pivs,v, L)

intersects &; at some ¢, and so on:

m
plwv - ‘Z AR VY (9.37)
=9

My 8y (9.38) !

where of course o= N, Au,12¢. Pormulas (9.34,36) imply
that

d(;z,uus g ~Nl1y) 1¢4 ¢m (9.39)
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C AL L)% Ay NlUy) A (tyy) 16 hemeg  (9.40)

AlUh, Udos )
/(W»,annz'; _d'.,e..f -4 A(z, M_‘_‘Q} (9.41)

) -hmn
rd
o Mugep "~ 9 AlUg)

By Q4's definition

N(Ugl say (9.42)

and we can exchange ¢4, Ug,y in (9.41) so

)3 AL ] (9.43)
e 4 b _
Similarly one proves
L onf2s ————— (9.44)
P o, 1) % % jv\[Z* WWMM]
and its JfUm,¢mqyq) analogue. For ms=Q
y) 6{(4/'10) '
< + ; 9.45)
'20(“’”’ i’ j“[i Mun [ (), A 101] ] (

The sequence {'X/] still has to be constructed. We will
first construct another sequence {')h} . start from Aq=9

and inductively given T define Jﬁ(,,,_ to be the minimal




#4.35> A4 satisfying one of the four conditions

G (Ahae) = N A (K4 s (9.46)

A (Al % A(A¢) 5 (9.47)

) T 73 = M K4 £] (9.48)

Koy = A ) & (9.49)
where

M>re1>3 ‘ (9.50)

are fixed numbers to be chosen later. The symbols to the
right of each condition among (9.46~49) denote the type of
intervals (f4,%4.1) satisfying it. Clearly for X=8,03,03

1-Y; M
de A ()af/a = pyeaxrt s

= o -4
for H




(2 T T [t -

a ) 1-p e p
l | 0 1‘!/) /"()‘"/”
‘ -4 2/0,34‘)-,1-0-1 <7 (9.52)

and when Az O((M,Ul

o
(.4.‘.5(% -—f-,))df:ﬁ.-fT 0 = €1 (9.53)
9

-fa-<ix  1-X<x<m (9.54)

o .__f.._llt’r':‘;" (9.55)
Recall
[,/
[o,dreml= @ 3 ‘ (9.56)

where each [ can be an interval of any type, ° denotes the
initial point and multipication and exponentiation denote the
union of intervals. The string of symbols is uniquely broken

into the following substrings:

¢r8"a“ca WY (9.57)




aY: 4] E‘(’(-) n4£30 (9.58)

- g% £y1 (9.59)
s\

¢-) g3 ‘ M, 1 (9.60)

. (9.61)

where (-) is either . or blank and similarly (IJ) is either
[ or blank. Each substring forms one (Yy,‘Xj,g] interval.

From (9.43-45) we will derive
,Wa)', U)e1) »AJ- (9.62)

and from (9.51-54)

‘/J'vi .

§ d4 ¢ 8 (9.63)
X, Qr41

X

so summing up




(4, ) D A; .
7&—4—‘ 7 Mam —L 3 |, €y, (9.64)
{"""d: ) 8
o Al4)

where vV runs over several cases which will be specified. We

will consider each of (9.57-61) in turn. The details are !
unimportant but the reader should understand why our method
works for /4>>)>>i and why a simpler breakup then (9.57-61)

would not do.
D cor@"atcm n 41
The fj's definition does not treat gkro in any special way

80 it can be considered as an inside point. We will take no

account of the possible [ interval besides adding‘q to
8cgtat)

IXSY: 4=air]! =B(I£”E/")+'Z‘-ﬂ¢'“'i"z (9.65)
Let
E”EL" (Y)' ' xfﬁ] = (z‘!-n,u fl\"»] (9.66)

and denote




A=A(Kg) (9.67)

Then

Aps Ay = X"& | Ay s 54T (9.68)

and because of (9.9)

1 et et bl o T

Ap-Apn>(1- X" & (9.69)
Xjue- ¥j » @- X545 (9.70) f

which combines with (9.25) to give

4

A)’»l(z-f"—f )a (9.71)

Ay 2(4-3)x >0 (9.72)
Prom now till the end of the proof we will denote

AcAlr) - é;Ar (9.73)
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Case 1) breaks into two parts

1a) X"ex® =» 4

] |
F~3+ L 3 23X e 20 4 N1 (9.74)
e |
!
A> %Awﬂ\[z(i--‘;)] | (9.75) {
i
¥

R<hng+(n+11yn (9.76)

=% N & Lo Hf20-%1]

E )1?5«»04-'1)‘1

(9.77)
This lower bound is a linear fraction in # . It is positive
for 1¢N oo 80 its minimum in that interval is obtained at

one of the endpoints

. E1=E),., =3¢-,[-%%i) (9.78)
* Ea= El,...ﬁij}%zt (9.79)
b XX = nsk
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¥=3r -x—Az'a— > 2043 % 2(1- %) N (9.80)

and the rest is identical to case Ia) with A replaced by £ .

[ in) ¢)@"ag*m n439 :
| B0 8% (Fhon, Atenr ] | (9.81)
Denote
a_= al . ’ (9.82)
| e B Lk n (9.83)
ay b
i Then
‘ A
z' A [1- Kot (154 Xas 41 5 e
'?
|
-~n -y~
= [ a-1R (122571 ] (9.84)
A, (,.-1-.,;% (p-r1 >0 (9.85)
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-4
~

-4
~

xns « ;4

= N4

Y23+ ;ﬂ‘a > 9wu>~".-<(>"-z>.‘“")>,(,w1-‘»)>"

. 2 LlpmanN]

E- ng +m+217

4
53 - '2-%1 C/M-)"“
Laq/

-
6-‘- 3+ yal - > #,i-lk . 1) )")(#)‘_’.’1) )1’

« X4 2

- Elpertne]

AP+ hran

g, . 38 AR
" 17

. g%ca)

. Eb‘ [013‘4]

(9.86)

(9.87)

(9.88)

(9.89)

(9.90)

(9.91)

(9.92)




a=n(u il

Ay (1-X4x% 320

and by (9.44)

vt g ot

£- 4 o 3%
(‘/'1)7«
* < - A">
Ee L_L‘Z
V) ¢ra"a

This case is very similar to III)

ngAﬂ_)’l
. npen
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(9.93)

(9.94)

(9.95)

(9.96)

(9.97)

(9.98)

(9.99)

= e o W G ST A



T e A

1—§ <-<</m
Obviously (9.102) is minimized at a=Q

* Ez’v‘i‘

(9.100)

(9.101)

(9.102)

(9.103)

(9.104)

and it is easy to prove that (9.103) is minimized at <=M

bn net)

* F'= ‘1

Now insert

(9.105)




AL 2+€ EY0 (9.106)

=328 (9.107)

which results in

. E L‘z-
”"“""v V492081 (9.108)

Formula (9. ) is the simplest we could devise. A better

estimate is provided by

-1
FTges, Q1 = —%[aq)fmyl (9.109)

plu,0) = 1"’ gv4' X )Cam-my]z’[.ﬁfu Fa’,’)-ﬂyﬂl

!d‘jl (9.110)
2 mann(;l

Formula (9.110) is guaranteed to be correct up to a constant
factor for every domain, is asymptotically correct for slender
domains and is hopefully reasonably accurate in general.
Besides the conformal distance / we will be interested
in M/[U, Mfu,¢1] and thus in the geodesics. It is well

known that minimizing (F Id)l is much easier than finding
r
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the minimal path of integration . Theorem 9.l1's proof's

approach seems powerless to confront that problem but Theorem

8.3 comes to the rescue.

Theorem 9.7: For any u,ye¢ {13

| s M ,ﬂ(},m L3 rug; (Jw{ LN <24 (9.111) L{
d X .

Wel(ud) Y& Elu,0) «X(t,0) Wel(ub)

Proof: Let x&X be generated by the center of coardinates
X~ Q0~«((0] A0] ' (9.112)

and also normalize
Glo,a,0,0)=A0u) =1 (9.113)

The basic idea of the proof follows. Suppose we are given a
curve P(f] (0s¥¢d starting from PRld=« . Define the

monotonically increasing domains

LA ~Y pBLret, v-é:] (9.114)

By formula (9.6)
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| Alor= D010
Define A to be the first J3( such that AT4& (] :
Acsic L
and there exists
G edAi8) 130
Define

pePM)

se PG (77:77

j“"“""--Il-"ﬂ"““““"“"'lIl!-'-'""'F"""""'““*”'fjw

(9.115)

(9.116)

(9.117)

(9.118)

(9.119)

when ASL1c{l define 2=/ ) ﬁ=P . Suppose we have proven

the existence of
o
wWe(nov)aP

Then eithér w¢P so that

(9.120)

——TTRTTT TR T Y
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lo(;,m ¢ prap) (9.121)

pl«.p1 < V& Xa«fé P (9.122)

or «}c(f,c,) so that

/a(«,a})slo(-!.fl*f(f,w) (9.123)

plpscplaiw-pl, Do, 717 <
N A A S S—
. ZA(@WJ” g (9.124).

and one has to bound /w-q! from below. When (9.120) will be

established we will assume that v« (/9,7? .

Define the curves

PitAred o+ y,-m{ o0sAh ¢4 (9.125)
"(A-1
/Me‘( ! 1cke1427-0 (9.126)

PiA1« Pyt (9.127)




Ry(A)s o= ) # 0st<1 (9.128)

-pme 1<h<1417-0 (9.129)
P ()= P.yth | (9.130)
where
, .1
M 1s = (9.131)
ANCrtm I . @ < L APYP S 13
oy 7 % (9.132)
Denote
Ay Mon(Ag, 45 : (9.133)
A= M (Lg,4,) (9.134)

R M &
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T=4 4+ 2 44 (9.135)

- As< Ao (9.136)

and similarly use the notation Fi, P. etc. We will consider

three cases.

I) As <140

Clearly

~N *
Fr@R ¢ Si(ww) (9.137)

so there exists

e

we (01 a(PSvP") (9.138)

Denote the P: containing « by /¢ etc. Theorem 8.3 and
Lemma 7.7 imply that

(3T )1 w-91 % L (9,000 > (R ) (9.139)

Obviously




in Ag > 149 5 4

> — . e

I&uh,flql - el v [y

‘ Mang - »Tis' 9e Pclie,elu e«'[n.e, T+0]

bw upry 1-191-

Al

and by Theorem 7.6

2
R’””E P=P+,7s[«,,a]

Altogether

(3077 ) 18-y w4 - ﬁ%,/xme‘é—)

MP < (1»-9)/«,-%

~c
Clearly

143

(9.140)

(9.141)

(9.142)

(9.143)

(9.144)

(9.145)




lon(«, Qn(a=,<1) @ Pg s Su0) (9.146)

so there exists either | ;

we [M(un6la (/'-"r;- o[Cpr ] ) (9.147)
or
geNuvin Con[apm Lo a(p +ar] (9.148)

Situation (9.147) has already been treated. For (9.148)

notice that there always exists

Aellnuv) aDylo,1) (9.149)

Hence there exists

[ 59 -
Wel (R, yln(Fogv Ry (9.150)

Theorem 8.3 implies




Croi1 041> o iof o 215 0]

fhm gl TRRD
} ”‘W'V‘ W"i ' _ >I
M T Ret <9
! -
(9.151)

) 1 ' 4
Y Mim (/M-i-E,/M o)

and obviously —

W P¢ (1027-8) - £ (9.152)

III) X_a- > if‘e
Clearly
Con [0, L0 (=~ 1] € ST, 0 (9.153)

thus there exists either
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A A I ARt bt L P el L

wel'(u,0)n [-pa p1] (9.154)

or

gel(uola [~ smvpn, te00] (9.155)
(0,4) e« (9.156)
we (% Y) a(Bigny v Prugng ) (9.157)

Situation (9.154) is trivial and (9.155-157) has been covered
in 1II).

Ingserting M=1.47¢ , €-14.265  into (9.121-124),
(9.144,145), (9.151,152) results in the right hand side
inequality of (9.111). The left follows from

Wl (0, 192) => Ox, )¢ M[/{x,m} POW]  (9.158)

Theorem 9.3: For any «,ue¢ljeo the curves ((u,u,{1)
and ¥(u,u,Sl) can be parametrized by 0<¥t¢{ 8o that




T R TRy T T r e

P(EDI,MIT) < (9.159)

R rve Tyl (9.160)
240041 [ ¢ ¢ (9.161)

W XA]

Sketch of proof: Normalize ﬂ((u,o,ﬂhl and parametrize

by Z's arc length. Divide the interval (0,11 into

N
€0,1]: U (44,441 (9.162)

4o
as in (9.46-49). Use Theorem 9.2 to determine {4 }Z! and
for each 0¢¥<1 define M(#] to be the piecewise linear

interpolation in M 's arc length of
. mvd m
Pel (A Yy {uio{wel,,, ® (v} (9.163)

Formula (9.159) holds at the X 's and implies (9.160) there,
but a much better C 1is obtainable by the construction in the

proof of Theorem 9.2. When 7\://»1 formulas (9.159,160) are

easily extendable to all (9,1] and the real part of

M v Ay P

L v R LT A DN W, Aty - 1 W Vo




/3 Z* ;[[-ﬁ is bounded.

4 's by wi's construction and Theorem 5.4, and the bound is

The imaginary part is bounded at the
extended to all £ by formula (9.16). The case m=() requires

special consideration but notice that Theorem 9.2's proof

shows that

PlXwIS Pl @] ' (9.164)

and the rest is similar.

.
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l0. Perturbation and Localization Theory.

The goal of this section is to estimate the change in
confoimal mapping related functions induced by changing the
domain {1 to Ei, with as little relience as possible on
detailed structure. Most of this section is dedicated to the
simplest conformal functon: F(G,-Ql where G"-Qn.(?. More
complicated functions such as ﬂq M K(M,U,ﬂf will be
considered at the end.

First we must study infinitesmal perturbations. A

smooth one satisfies

A =/{fl’. e )-{(ne? [oc peaT, 0cnc22sdmiroler} (10.1)

We want to compute J?-,O,JL) because
é(ulw,ﬁ’:/[—{(fﬂ,v'ﬂllolﬁ.] (10.2)

Recall (5.21,23)

7(3"'£"#"‘"“h30 ) je (10.3)

R:?(;)e -lw} acDA (10.4)

149




The boundary condition is approximated by

Rs gle . -cdrereate (10.5)

This is a Dirichlet problem in 0(2,1) whose solution implies

- IF
/(3,0,_/1/ : 3[1‘ £ {f ‘i-l-de + are’] (10.6)
e B ° B ’
In particular
-
Fodh:Feo i1~ = (dror de » oter] (10.7)
Q

Pormula (10.7) has elegant error bounds:

Theorem 10.1: For any ge.t

VZ Anta Taw (4,00 ¢ Flo, A ¢ <5 Ko Lalho) (10.9)
Conjecture:

2\ A
Fs%-%*-;v—-,;- (10.9)

This theorem is hidden in { 3 1. The conjecture is ours.

Suppose we are given Nell ana required to change (1(9/: {1
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to {1(2): l continuously and monotomically

0ctich, 1 = Q0hc QA (10.10)

The simplest way to do it is Loewner's method. Let the Jordan

~ -~ -
curve Poc (I1\[f]l connect Jfl to 94l and define

N

ngoe"m ; PeS(oR,90, N\Q) (10.11)
Let P be parametrized as Pr#) o<A¢1  and define

Qrkr= 0\ PCCA 1) (10.12)

The change from (L(*-¢) to {L/#) is infinitesmal though not
smooth. It turns out that (10.6) still holds with ¢/9) a

delta function

el
tuh €+ (€) (10.13)
K(B,O,A):a[ir#m%'*@ -]
A fCo0A-1,6 QAT (10.14)

)5 Q (10.15)




The proof is simple. Clearly

Aoc A< Dlo 1) (10.16)

Ao=D(a, 4\ D{e T, ool (10.17)

The harmonic function from (10.3) satisfies

R, PO s oA

Re g(3;= 0 3@3/1,:1?0(0,1) (10.18)

The Dirichlet problem in JL, is exactly solvable and yields
(10.13). Formulas (10.13) and (10.2) for [1(f-¢),(L(A)

combine to

. ta‘{l‘l
W {[«,o. QUA] - ""“’ /[fw,ﬂl ) -——’#‘-ﬂ (10.20)

& crfA ([,,]

We have not insisted on any fixed { direction such as

91 /(0,(9, £1)»0 so we can and will choose

(CAEN)] (10.21)




Of course (10.21) implies an added rotation to (1.10), but we
will not use them together.

The worst obsticle to the use of Theorem 1.2 to bound
Fre, 1) from below is the requirement that the comparison
domain.ﬂ1 must contain every bart of {l no matter how far and
insignificant. The following argument shows a way to throw

out something.

Theorem 10.2: Suppose that ¢¢(l;cf(l, where the

domains are possibly multisheeted. Then

1- 11(5-()1 \taz L(Il ﬂt) ¢ F("l -QIJ
-0 0 \Gp,, 0,00 FlOQ0

s1 (10.22)
The inequality is sharp.
Proof: Let us continuously change (ifoj:{; to Qmn=Q, by

Loewner's method. Differentiating (10.20) with respect to Y«

results in
U1 {(u,v,nrm;-ﬂe 2] . ph g, —1—-1] (10.23)
Inserting «:{ proves

24 I E L0, QA - AL (10.24)

A
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and for we QA , 6[‘,‘”'_“”,]: e,-@

%A;a«f(« o, Lot - #‘————? ﬁ-"e,’;_ul (10.25)

W [T0enTL, 0 Qrh7= - ( 1_4,..;9. (10.26)
J‘% 107904,0, Q14,7

Clearly
Tl'-r%/
MAm de de
' o — = Und (10.27)
w < 30091), 25.7# Wty ;E/ 14"‘% 5—%”4“% ”
thus ' '

W2l L[ 5000700, 0, Qhi1 32 b FL0, Q007 (10.28)

Integration between 2"—0 and A-1 results in (10.22).
Equality holds iff

((.04, v, Q1= Dio)~ [, 1] (10.29)

In practice 26 50,304, 60, S is not worth the trouble
to estimate. Even when it is ignored formula (10.22) is an

excellent bound when 3'.(2:\ %.0-1, is connected i.e. we extend

Q4 only at one location (later we will see how to handle




several locations). For example let {l be a rectangle
Q- (-a,a)+ ¢(-1,1) ar9 ©(10.30)

and let {l be its extension into ¢ when the edge a4 (~1,11

is erased
T\ (-a+ e[, 1) \([~a,a1-4 )\ ((~a,a1+4) ' (10.31)

Then for a»{

™ ~-Ta
Flo, o~z (=2 71 (10.32)
. ~%a
Llo+1F1,11,0,2)~26 (10.33)
and Theorem 10.2 implies
™ T4 - m -FTa
F(1-16" )¢ Flo,S) ¢ _‘.'.(17 2¢' %) (10.34)

which is a very tight bound even for moderate 4. The correct

value is

o~ -Ta
Fro, R )~ - (1o (2-51€ 1 (10.35)
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The extension (Al has a large area but little effect on

F(o,-) . Moreover most of the effect results from the part of

L8\Q near the edge a+<(-1,1) . PFor instance

F(0,(-0,a:0)+£ (4,01~ F(1e (126" 87 ] (10.36)

The mere knowledge of A(¢,{l) determines F(,{l1) up to
a factor of 2. How much more would we learn by exsamining
d('s part near ¢ in more detail? Combining Theorems 10.2
and 8.1 we obtain a localization theorem:

Corollary 10.3: For any @f.) Yoo , %3 {

+ (1~ %12 Fv, 1)
o] = [—|"] ¢ < .
[% 1~-.‘:) ] F(0,0q00,=nmm1) S 1 (1037
Conjecture
232
(t-%) < (10.38)

Our maximal [ change bound is off by at most a factor of
2.

Before proceeding any further we must make some
definitions. Let A be a set of /A disks each of which has a
specified center even if it equals all 1. A subset BcA is




called a 4 core of A , denoted by

Be T(A,/m (10.39)
‘iff
v b > v ' 0.
DeR P(30,M1¢A {a} (10.40)
' !. ' ’94 .
{D (3, pa _Cl)}D(}’d'm‘A ant dinfs (10.41)

where /,1),0.

Lemma 10.4: For any nonempty conipact set of {1 A daisks
< L
A and 0¢m <3

T(A,m) t{} ' (10.42)

Proof: Define a B/A)L‘T(A,/\) inductively by
BeM = {OaCAI} v B[C0G,a)€eA] 3% DmiA} ] (10.43)

wvhere D,,(AI¢A maximizes the radius.




Notice that a division of (9.46-49)'s general type for
moderate )./1 is provided by any/}‘ho core of
{0al3,5a3m 011 | Je3(um .

suppose that (#¢f{ln{l. Define the perturbation boundary

WO L2 T (u, AnlUN (5025 (10.44)

e g, B AT [N

Define the reduced perturbation boundary by imposing a disk
condition in Q

R0 QT - {,«DA(o,ﬂ,ﬂ'; | 3 prore D u, 500,087 o
(p(énv o1 DLptm, Hnma,t]c Q) } (10.45)

where the perturbation radius at «€Jd, is

*

Nat4 Q500 mas (200, Q), Al 501 (10. 46) .

Notice that the condition inside (10.45) is automatically
satisfied for any aéQAIfﬁfi « Our results will not be
affected by imposing an extra disk condition in ff or
replacing (10.45) by a cone condition. For each qsk(@,ﬂ,ﬁ)
define the perturbation size

3
%
:




J;(u,u,ﬂ,ﬁ) =q 1~ /6'(0. o] ue?9.0

i-{((f(w,c,.(l){ UeIQ
and the perturbation disk
Da(, 30z Daf e, & Na(a, 2,300, ]

The relative F perturbation is

rru, L) Fr9, Q)
Fas, {0+ Fly, Q)

ArF6,0,40-

Theorem 10.5: For any Gc_ﬂn.ﬁ ,o&&ﬂbﬁ ,/A}O

¢
lar. Q80 [ cc 37 w0, 0, 80) § o mep dy()
Dy 0,81 €T, pr ol 4

where 7, is any
K‘T[(DA{“oﬂ,ﬁ’ | ““EA(‘”I'nIﬁ'},/M]
Moreover when Lc{l or (lc(

4R (0. 0,811 ¥ €2 Z I3 (0]
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(10.47)

(10.48)

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

ki

AL Y LE A . YR

R




Proof: Clearly /ud « We will prove Theorem 10.5 for ﬂc.ﬁ or

{lc 1 and obtain the general result in the following way. For
any eI , TN

Ax Dlu, nw 01, D0, ] (10.54)
- 1o

O, 4 nwi1a DR, 2n(a 0l = (3 (10.55)
Hence

TazTeo T2 (10.56)

Toe T[(0a00 Q0 0 TR V0. QT p0] =

= T({0a Q0] { ue Yo, 0,003, ml (10.57)

Tch[fDA(ﬁ,ﬂ,ﬁl [ AeTNn m(o,ﬂ,ﬁ)}'ﬂ] -

= T(0a R D] TieN(0, 0, MY, w7 (10.58)




where

Qq=Cgn(o, Q0 )

Theorem 10.5 applied to {12{l4 ,JTngT results in

AR, Q1) ¢ T d2n0,Q,01)
Dyn, Q, Qg €Ty

laf (0,00, 8] c¢ T 0o (0,007
Oﬂla.:ﬂtlﬂ)
Obviously for any n eV (0,0, Q1y), e 84(01-911-?7-’)

JA(«,O,.Q,.QQ s dyemo, 0.8)

deor, 8 Qs Q) ¢ Iyt QI

and the general Theorem follows.

Assume that (1017 and define’

A {(ﬁ,o.ﬂ)

Obviously

l6l

(10.59)

(10.60)

(10.61)

(10.62)

(10.63)

(10.64)

B O T

L T AT T T



F(o, S\)

Let

Te TLC0,05: 4000 00,0 | JeAUANIDOL), 5]

N3 =nfgi D, 1] 2- k!
We will prove that
€ A d-F o) ¢ 2 A<y niy)
DJ(SIG i OJJ)FI DJ‘;)FT

Denote
T={DJ.})”'1 ={Dd[}fl 4)')/.,0(0'2)]} )’%1

The upper bound on 1-F‘1(0,_/L) is obvious:

(10.65)

(10.66)

(10.67)

(10.68)

(10.69)

:-fo D@, 1)\ 4., 04] .

E'o, 1) %F 1o, LOEND 0;1°
At

"/7:1 0, B@UND; T > T(i-m,n, 1- czn,

and
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4»1 Flo, Dlan ¢ D4 ]

(10.70)

LA At i 25 SO




W Z (B ma000] 3 T 24y (10.71)
' v L%

T ArET N " (10.
& Pl (10.72)

The lower bound is a bit tricky. Replace {fﬂj}fbi by any
finite subset thereof and arrange it monotonically

nondecreasing in ni

4 = npvie (10.73)
and define
D; =R (3i 20 00,0] (10.74)
Then ‘
)": A
-1 £ (0, G [0, D00\ 10407 00])
Filot): TT - — = g
131 F(0,%n [0, Dl & (Dx27 0] )
Azt
F(O, PJ) =)
. —d = ,0,Q;)
) 57:1 F(a,Q;) ?LF [o'llpd 411 (10.75)
where

el R AR AK G R




- ’ LA (=N N .
afmo.i-zn,-)ve“'a’”AA”” (= ) (10.76) i
i
I
P; ~.£«~.[a.aj\(b”ja.'5./1)] (10.77)
Clearly
l Q‘,nnjn"?)’./te-sq,'aaj,ajl (10.78)
!
gso by Theorem 3.3
| & (1-7y)
F (pe0.@] ¢ == 10.79)
. {tpy08] @y ¢
where
(10.80)

Ry=1-1{r3081 > chy

Pormulas (10.75,79,80) combine to prove the leftmost

inequality of (10.68).
We will transform (10.68) to Q.

exists ¢ 3 MIN such that

For any },‘ there

o {03 0. Dglu; QT e Ty (10.81)




Theorem 3.5 implies that

N <dylm;, 0, 0,80 (10.82)

N

wvhich proves the upper bound. Moreover for any as%ﬂ\a_(z

R S5 AT, IR

JA(u,@,.a,.m<c1\[/ra,u,_(l),0(0,1)] | (10.83)
and
e cissgnt 0.84
LEIY  en W (10.84) k
where —_ i
)
E(ahD[‘/(/w, foin{{rm;] (10.85)
Thus

Anea Ew) | ¢ 1
¢ == 7N

>
Qg luieTy Mt M Ity
lwieD ;

(10.86)

Z d;"(!ﬁ) 5(‘12

D(n) €T, il

which proves the lower bound.

Now assume that .(Lc.a’. Define

A~ (rﬂ,o,.ff) (10.87)




the construction of (10.66) is too crude for this case. We

claim that either

n(o, L) ¢ -;: (10.88)

or

IANINO e D (10.89)
DeA

where
A~ {0 [} <aep Dol | 36 2.4N00, 1)
3 9Gie D[jm(p] O(?f}),h/‘})] c_,f_} (10.90)

Suppose that A(g,A) ),.‘g'i . For any (J;QA\ 30f0 1) define X
to be the first 0</ <1 such that '.g. D%s-4,54)¥ A . Hence
!

Tg‘; net-4, 3y (10.91)

and there exists
3¢90 l-g-‘/)(") (10.92)

It is easy to prove that




Ye WTER ER G TN . (10.93)

which proves (10.90). 1In case (10.88) set T%,{[JMN})]} é
where 3 maximizes N(}] . In case (10.89) set T=TrA) . 1n
both cases the proof of theorem 10.5 proceeds as before. The !
relations between (10.45), (10.90) and the rest of the proof {

are the following. In order to prove (10.83) (for.ﬂth ) one

needs (10.90). The area argument in (10.86) necessitates
(10.45) and once (10.45) is imposed formula (10.81) relies on
(10.90).

Formula (10.51) indicates thét the perturbation can be
broken into basic parts and that up to a constant their
effects simply sum up. This should not be misinterpreted to
mean that there is not much interaction between the parts.
For instance, in Fig. 10.1 adding 4; to {l has far less
effect than adding &4; to (¢4,.

Theorem 10.5 estimates AF as accurately as can be
reasonably expected except that the lower bound may be
extended to one which is valid in general, though it may be
in many cases because we know the amplitudes of the positive
and negative contributions only up to a multiplicativ~
constant. The detailed ft structure has not been completely

eliminated: 1105]1 appears in (10.52). Still it is remarkable

167







that we have gotten even that close. The ZJ;\'(M) part ‘
~ DJ(“"Té
corresponding to U «?.{l can be replaced by

( Few, 0,9,8) wcdu, Q) | (10.94)

which is similar to the infinitesimal formula (10.6). The
rest of the sum has a similar upper but not lower bound.
THe rightmost bound of (AF! in (10.51) follows from a
fraction of the complete proof.

Define the maximal external curvature of 7% (U,ﬂnﬁ)
relative to ¢ to be

K(e.0,8)- v?o [ X0, TCo (1, 0a01]) -dup0]10.95)
ueIlan (6,0 0)

where X(4,3(v)) denotes W(u)'s curvature at ¢ which is
positive (negative) when €& (") is locally convex (concave).

Inserting the Ue :5(") which minimizes [¢“-{¢! proves that

Keo,L0,801%-1 (10.96)

. N ~
Theorem 10.6: For any (eflafl ;¥ {lvll
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e

RO, falu, . .

JAR(U,Q, Q1] < %
aﬁyan((’,ﬂﬂﬁ] 0(1'(61,0..(2)

X =
o 1 ng (2.3 1 7
dao” K((y,.ﬂ.mﬂ] Ao TR, T (10.97)

Proof: It is sufficient to prove (10.97) for {lcQ because

then it applies to (1: Gm(0, Qall)c ,_Qgcﬁ and

duy, Q15 drww, Q) (10.98)

needucnrcy, S . (106.99)

Thus assume that .Qc‘ﬂ. Let #te¢ 34 (U,ﬂ,ﬁ) maximize
dau,s, 0, ) and denote ¢¢= pru) of (10.45). Theorem 10.5
implies that

e-'if Coue, 0,21

|aF1¢Cdy € (10.100)

Normalize

Atuu, D=1 (10.101)

TR




Let 4.,4; be the first, if any, PCag,v, L]  points in
ANJ (1, £ er—z.'ﬂ) , AD4( 0, .f‘_' , L) respectively. Clearly

4
n
A 24, 3
Pluag, )y (L~ éhn 7, (10.102)
k8
3l j
Suppose that 5
- Pl <4 :§
E Ny € —— = !
5N T (10.103)
Then for any 363_{20 0,((«,%,.0—)
X301 K — cag .
(3.4 T3, 050 | (10.104)
Thus for any «ye Qq(un, £, (1)
Datw, 4, Q1c C\D (e LA, 1) (10.105)
AW, YK ! gl *

where V/\‘ is the inside normal to 95.(2 at A. Corollary 10.3
implies that

4

1~1Y 1\t 1 Py
Y e =~
Fv > (1:« X ) Pr(1e1KX! K K-4 (10.106)

¥ kr-anl (10.107)




rﬂﬂ&___‘_h T R s " ,
Hence
Plv1 1) > flUe )+ p01m,43) >,
ter %,
> Ly (..JL) L4 2 141 .
3o, U5 ked)dxs ) o G g v 3hic (10.108)
. = g
Together with (10.102)
1 :
14, L. 4 1
plua i)y 1.2,.%* Eh(ngr ) ee (10.109)

Similarly

b4 L4
PLOUT)Y —7_-.24 + ;—L(n 1L )e (10.110)

L
e

Formulas (10.100,109,110) prove (10.97).

when K is not available Theorem 10.6 degenerates into

fAF((’,.ﬂ,ﬁl’fC O'(U..-ﬂ,.ﬁl (10.111)

where

d-((,,-(.llﬁ’ = M J\(U,.ﬂ) ﬂA{ul_nlfv
neTCen (0,005 Ax(p v L)

(10.112)

will be called the directed distance from 11 to ji relative to




¢ . To get an idea about how O behaves consider the four

cases in Fig. 10.2.

Localization is a special kind of perturbation so Theorem

10.6 is applicable to the situation of Corollary 10.3 and

implies that for any «31

(v, Q)
|£ i’ g (10.113)

[~ to, 04 C0,an10,00,07)

aljn

which is inferior to the bound 5'- obtained there.

For moderate K the bound (10.97) is linear ing . When
[ is large it is proportional toVo© . Can that happen to
JAF|l 2 The simplest nonlinear &~ dependence occures for an

internal corner such as
Q:8\ F=,01 , v:=1 (10.114)
It is perturbed to
ﬁs_ﬂ\‘(/ Dplw & gltu,v ﬂ'..ﬂ] (10.115)
“‘%n t 1.‘6 [ .
The magnitude of [AF/U,.Q,.?[)I is provided by Theorem 10.5.

Let us consider only the part of A near (-1,0) . In this

case a /. is easily chosen to consist of §- disks whose




Baciusat el Y " T T R N T T B . aia . L b e e N . T —

-1e
X6




&
(uryc (10.116)
A G~
Thus
laF1ve Z _ai >c &b & (10.117) i
i . 3

3
A similar upper bound holds. :
The previous example shows a nonlinear G dependence, but
the nonlinearity is extremely tame. So let us add more
AL M 4N
external curvature! The star ﬂ.=C\‘({£9 " (4,+] is a
dismal failure. However, the fractel in Fig. 10.3 succeeds

.when n 1is-large enough.

Theorem 10.7: There exists a domain {l and a ¢+«{l such

that for any 0< 0 <1 there exists a Q< {l such that

o, Q810 (10.118)

las(e, &, U] >C oV (10.119)

LT sv<d (10.120)







where YV is constant.

Proof: Define

Q-CN\ (==, £\ v P; (10.121)
e
where
Poz[-%, £] (10.122)
LF § 1
P;= P. v Y T (£-%+Pp1) (10.123)

where n>1 will be specified. Define

Q}:C\ (-2 ,-%) (10.124)
Obviously

a1, Q,80;4) <€ end (10.125)

Theorem 10.5 implies that

aF(t, Q;, 0ja)] 2 c 2 (v, v, Q) (10.126)
0%13

A by —_———_‘
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. Fa

wvhere 73 is the set of (PJ'\ pj.‘)c 's connect.ed componets.
We have lumped together opposite parts of 3.(1) for notational
simplicity. The equivalence of () to d;(m,acu is
obvious. Theorem 3.4's physical interpretation is intuitively
useful. In its terms {l was designed to compress the charge

lines.

Each WsT)'.q_ intersects 2n+2 (/€ T)‘ which will be labled

| Ut ,Us - - -+ Ugpeye We claim that
W 8 AP %W, 6, Lj0)- (s, T, Q) (10.127)
where'
' —1;-;\11 ,
&-C\W\(V‘ Up \[w+é (w-w)] (10.128)
O:0+n Xongi W (10.129)

h+ is the center of the interval W and A is its tangent so
that & is well inside ﬂ)‘ in W's scale. The proof relies
on Ww's perturbation theory which will be outlined later in
this section. PFormula (10.127) is obtained in three steps.
Pirst for any two infinitesimal d?g,ﬂ’qz &

o S




O

; L—Z*A&(d ’ —ﬁgﬂﬁa\‘“ ) (10.130)
i o (d 1.,0,.(11/(4,)( 10,0 ¢C

second a localized result

& b bt g i M

w(dq, &, Qi1 cwcdy, 5,8) (10.131)

e i e« ikt skt 00k

“and third
Co(@,0, 051 %cw (W, 0, L)1) (10.132)

Formula (10.127) implies

wel - '
2 WU, 0.0]) % pw, 0, Q). (10.133)
hap 1t)
where
ntl -
M= % Wl &) (10.134)

is independent of J‘ or W. It is easy to show that as in
(10.117)

A 1L wn

X4 .
] M2 = (10.135)

By induction
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[AF] »c‘/ui Yy LoV (10.136)

dovn -c '

v 1 Troan (10.137)

-

Conjecture 10.8: For any (ellafl o~ (Lol

|ar(o, 2,01 s c a¥u, 0,8 (10.138)
'%E“" 1 zeonafant (10.139)

It is time to consider other J related functions besides
. There seems to be only one other independent
monotone function: /.'9(«,0,..(1). The conformal distance function
"contains"™ the harmonic measure function because for any

ne U having an inside unit normal A

' L UrER, 0, 0 '
Eww(W.U,.ﬂl lw.m . f‘:ﬂ %‘-et/ T ! (10.140)
0

More generally we know that /(M,w and (V) determine

'y

1A g W T S BRI S



[ 6(4,,0)[ « A third basic function is Alvy ‘r«,u) where
94 K(U,ODO . Together with ,ofu,w it determines {ru,o)
and alone it determines /‘\1734,. 5::4,0; because

A»,?,,,//«,w : Arg {ruo - A—v p’(u.«; + T (10.141)

Por completeness we will also consider 79, 4 A {f«.o) .
The entire F perturbation theory except of Theorem 10.1
is generalizable to the above mentioned functions. Of course
the nonotonicity dependent upper bound of Theorem 10.2 and
lower bound of Theorem 10.5 generalize only for }ﬂ . There is
no point in going over all our previous results so let us see
what happens to the most detailed one, Theorem 10.5. For any
uvell P(«.v,.ﬂkﬂ define the reduced perturbation

boundary

Vyn (10, Q8- 0 Wle0,0) (10.142)
0c 1 n,9,Q,
Notice that '&ya(«,v.ﬂ.ﬁ)# Ra (U, .Q,ﬁ) only when the
perturbation is so large that it can hardly be called a
perturbatin, a case which will be excluded. Define the
perturbation size at ue'&A(u,U,.ﬂ,ﬂ) to be

Ju('\’,«.o,.ﬂ.ﬁh%f’ datw,0, 2,80 (10.143)
oe Mtu,0, 0




Theorem 10.5: Suppose that ¢, pe(l, I"‘Wm,ﬂ!cﬁ—
co s Qull and

Ju(u' «.u,.ﬂ.f[; ¢ (10.144)
n € Nyalu v, 0,8)

then

"f(“- A fs ¢ 1—%’—‘% D GEwmu 0,08 (10.145)
Tp «lol o‘(”'g'ﬁ, FTA

[Parg frww 1 (T | < < L -

‘Z JA(“'U,-aoﬁ’ JxA(wlu'(’l'Cl 'ﬁ') (10Q146)
Qaw 0, f1eT,

and for any nyt

'[?« L 'oa/(«,u, )J l ! crn Z :;‘(;;Q’

‘Z Jif‘\?,“,ﬂ.ﬁ) :Z(“,l Y, u'ﬂlﬁ) - (10.147)
DA(”'Q,§" T‘

where T, is as specified in Theorem 10.5 and
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4
Ya2:> T |bmraflonor|™ ¢

Cuder %t
r L 4
sct > l'-aﬁ'ﬁn'a.,((«,o.ﬂ:] ' (10.148)
Aat
. 2
L-{Cul,, | Vire Z4ve=n} (10.149)
2

Moreover when :'cfl or ﬁc.ﬂ— the reverse of inequality
(10.145) holds with a different constant.

Under the previous assumptions for any J'zo

: y c
> dLtwurd 2 egu o) $ il
B (WieTy

M| A §L 0 i) EAYICXD] 946943 | (10.150)
/ DJZKT
-3

Dyl w1€Ty

02;(5\9.%0._(2) 2Ll Q-1<
— L (21 < C
< n(“:.ﬁ.) J‘A(k’;“'o'n) ’ u5 l U ’ (100151)

where @¢[(u,v,fl] maximizes duw,0,Q,651),

Corollarys

1 [‘e"{"’fa/’“a”:ﬂ'(“fls c S dalwuel  (10.152)

D€ 7

e




v

! [y Juffwe1]lg I < ¢ LRU S [Gfmudfup]i{) (10.153)

Lpwd) o e,

e ay o e

Condition (10.144) is the weakest reasonable formulation
of the statement:ﬁ is a perturbation of () relative to u,u
of relative size less then ¢ . When (10.144) is violated for
ux¢ the upper bound of Theorem 10.5 is useless. Notice that
when y«¢ 3/l both nfu) and d;(w,m are ¢ but they cancel
each other as in (10.151). The J{ («w,u) in (10.147) implies
that ?4:' bn Yan J(u,w nytd is mainly affected by «4's near
“ . In contrast A)7 /ru,w is mainly affected by W 's near
¢ A more direct way to se these facts is to combine
localization theory with Theorem S.1. Each of the ) indexed
terms in (10.147) bounds the change in the real and imaginary
parts ot the generalizations of (5.21,22).

The single most striking fact about formula (10.147) is
that it disregards the smoothness of the perturbation. The
situation is analogous to the following. We want to compute
an integral transform in ¢<(} whose integration variable is
wed L. The kernel is singular at wss €3] and we know only
the order of magnitude N4ftwy) of the transformed function and
its sign. Formula (10.147) is the best possible under these
circumstances. The reverse of inequality (10.145) holds with

Ay
a different constant when {lc.l or {lc{l because then the
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integrand is of a fixed sign. a great amount of cancelation
occures when u 1is near J.(1, most of the contribution to the
sum comes from t's immediate neighborhood and the
perturbation is smooth. 1In that situation (10.147) is of

little use.




,

11, Numerical Conformal Mapping.

Supbose that we are given a éimply connected domain (L.
In the easiest to simulate incompressible fluid problemes

is periodic so it can be scaled and rotated to satisfy

N+17 -0 (11.1)

Je cetDaa)ec L (11.2)

which will be assumed from now on. We want to conformall& map
Ql onto the half plane Dfes/. Let us parametrize A0 by

-4 {{ €8 2SS

’5.(1-?([-«,«»)] (11.3)

?(x-ru‘) -7rx)+'ru‘ (11.4)

Several parametrizations desined to resolve 20 will be given

later. Define

e~ /[7&;, o, Q] (11.5)




Sy P~

The functions 3-9,1« ‘097 are analytic in 6 and bounded at
oo (compare with (5.21,22)) so

| (I-t‘n)(z-e; = c (11.6)

(T-ct) £m 369 = 0 (11.7)

where ] is the identity transform and H is the Hilbert

transform

w

~ ( Y- yix)

Zerx' (11.8)
e Y .
v o, Ao erx;z-e'x)

[H?'](ne

Manikoff and Zemack [ 10 ] took the imaginary part of (1l.6)

cﬁmgg H(R:?-GI*C | (11.9)

and rewrote (11.8) as

S €)1 -en
HY 0 e Hypns & (U 22 Z_dye) a0
o M —F—

where Hx is the hilbert transform in X . Actually they have
used different notation and have parametrized x-R:? . Ariyway
when z is specified (11.9,10) is a nonlinear integral
equation in § . Notice that it is well behaved even when 6
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is an extreme contraction of X . Manikoff and Zemack
numerica;ly approximated (11.9,10) and solved it by Newton
iterations where an N point approximation requires Ora?l
memory locétions and O(~MY) operations per iteration.

The MZ method has another fault, minor incomparison to
the (9(A/Y) storage. The numerical separation of H into M
and H-Hx may strongly increase the influence of Y(Y’l on
xHY(x1. We consider the 9x derivative of H(&g-eia%y
because the shape of :J_CL near ?(x) does not depend on an

additive constant. Moreover fo:r any harmonic function V

b4 .

9 = Ix o (11.11)
where ‘a,,,(f’ is &f/'s derivative in the inner normal direction.
Clearly

ATy , -
IxHY O = C W”,V’)‘ x GX1 ) AxX (11.12)
4n 0 mzem-e(x)
2

80 \/(‘x’) 's influence on OxH (/x) is proportional to

9x'0(¥) IxOM)
| @6 - 60x) >

(11.13)

vhich can be much smaller then the S - influence of k/(x')
X -xi2

on IxHx Y (x) . In other words the MZ method is not

conformally local. That holds with venagence for vortex




methods.
Like the previous approach, our scheme is a perturbation

method, but it is explicit. Soppose that we have the

functions ?,9 and want to perturbe {1 onto ﬁ For time
dependent domains QU(A) the perturbation is infinitesmal and

one may write 9= g-»ﬂo//( as
Drg=A (11.14)

where A is the velocity and D4 is the substatial derivative.

We willadjust 9Jf]'s scalling by
242 Dt Ay (11.15)

When iterating towards fixed ﬁ,i one simply defines

K= 'ﬁ%ﬂ (11.16)

a

where aAf is arbitrary, and performs Euler time stepping on
(11.14) and and other equations. The well known formula

(10.6) can be written as

D46 = Re(I-(H) -5— (11..17)
39?

It can not be used directly because where § croweds D40 can




be larger than 940 by many orders of magnitude. Our first
numerical observation has been that when (11.17) is

differetiated by & it gives

D*&\axe = '090,(.61‘3;)1 =

=R¢(T.~f‘/4)[;f—7 (3xh+4 25 Do _gi_;)] | (11.18)

which is well behaved even for complicated domains. We were
led to (11.18) by the theoretical observation that A 2a ffa)
and not é(«) is the correct function to consider.

Notice that as far as (l's shape is concerned A's
tangential component‘ﬂl(ﬂ lg“-—ﬂ-’ ] is arbitrary. However it
is numerically advantagious EZI: it to be derived from either
the physical velocity or (11.16) so that singularities move at
velocity X That advantage is realized by replacing A(x’)
inside the square brackets of (11.18) with ﬂ/x')-f’('(x) .
Notice the improvement near a corneror for a small scale
structure on which most of A is translation. The modified
(11.18) is locally translation invarient.

It is time to list our conformally local numerical
{mplementation. We will choose A(Y,4) from (11.15) to be a
sum of delta functions in the time A so that within each time
step N:=Q and at its end the scalling is reset abruptly

without any time stepping errors. All the functions 9'9 etc.
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will be computed at the M points
M.
Xg-4KAx = £ T 0<4 sa-1 (11.19)
and for an arbitrary function of Yy ’I{y} we will denote
A48 Y (11.20)

We time march the 2A*{ variables

(R g4 }Z; , Ay <o 7 (on Axodzo“ (11.21)

where
AN d ,
Ay Ysi={ WYndomx v = 5 e :xfs (11.22)
v / T (0 y/ N % (y ¥

Axfu=Yhe~Ys ‘ (11.23)
by

DR Gy = Re Ae . (11.24)

Dt Av Jn%, Ay DKy 2 7% ) (11.25)

"4

b B e i % the




sRe[ashs- 4

( 9:74,’ o.iya‘ )] T

where the constant € is determined by
%A, Uy oy 22T

The imaginary part of 7 is constructed by
éﬁmg.(,* 4 (R:g -8y *Ao(igﬁgu

The numerical Qx{f/ /HY' of nice functions Y , and 2x©
AxH(Y ax0) are |

-

[ LUt gy (Yl r-Yd)
by 2|5 S (U
lz Aok Lo _%.Z.J'
4 - 4’.(,1 4; -
A7AR DITASE w7
£'24, “"'{9'5'
“n 1ﬁ:¥4 .
[ 4 %ﬁ'@‘l ?’ A,
2o 941’-34
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(11.26)

(11.27)

(11.28)

(11.29)

(11.30)




Ne

HYs= - £ 5 M—— Ix by -

44
' ’ v “&"‘lﬁ
-[1+(-u""“’_‘_":‘___._x.__a,e4] (11.31)
wn T4
2z
AxH(YIx8)4

PR
z

q)
Y anbu - MM&_ __4;4('“1_21__"_,‘_4 #n(9- 4 044 )

:-.:_,.Z
L4

4‘11

‘ .
[ 9x6g e+ & o° f QL;%:%___:"‘ LI T g)+ma.94](11.32)
2

Formulas (11.29-32) are conformally local and are accurate to
an infinite order in i&. See the Appendix about (11.29).
At the end of each time step a rescalling is done.

Suppose that

Yo Xy (11.33)

Then
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L Xd's

o Y agre 5. @
o B e e
A

£ (11.34)

oM™ 1 Tt lﬂ.{l‘-
S € — Tz
& ¥on —"—-'; £ —“_—{ <

v ¢/

The points ?4 are specifiedby some scaling formula. For

instance

A X = c V¥

:[ lA,g{"“(o.z[mgl"-r(fzﬂ‘uﬂ-’-)zkxL %‘;% {{] (11.35)
vhere

Os/«,ylsi (11.36)

are constants and V¥ is a smoothing operation. The constant

is determined by
~y
% Ax¥Xy =T (11.37)

Notice that (11.35) is constructed so that 4 is not much
dependent on X . Particular choices are M=) where ¥
approximates a constant times JJ]l's arc length and 1,429

vhere {74}'8 density is approxmetely proportional to 2A's
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curvature when it is large.
For incompressible irotational flow problems the velocity

is determined by

4. 2ebinig (11.38)
9

where the potential function ¢ evolves according to
z .
D¢ = LIAI2-shn g (11.39)

Our numerical method (11.19-39) has not been implemented
yet. An early version based on (11.7) and (11.18) with the
standard spectral Jx has been programed. It did very well
on time dependent domains where A was given aperiori,
including a saw teeth domain. However when applied to the
Rayleigh-Taylor instability it developed an explosive
numerical instability when the spike's tip resolution became
poor. The same behaviour has been shown by the Manikoff
Zemack method and the vortex method but the vortex method
blows up at a later time than the MZ method, and (11.18)
performs similarly to Mz with much fewer memory locations and
operations. We hope that (11.19-39) will do better. At worst
it is flexiable enough to be modifiable into something better.
Conformal locality will be certainly usefull in truely

complicated problems, when we do not want a poorly resolved
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part of 9Ll to contaminate others.

We still have two points to mention. One is the
neccesity for specifying the center 4 of the conformal map.
The conformal mapping is used only to compute QQY’ by (11.11),

and it is center independent. The choice (=~ in (11.5) is }

highly natural because of (l11.2), but can it be avoided in

general? The Schwazian derivative

€235-I) 9cbin 328 + (326" (11.40)

is center independent, but we‘do not see any good comming out
of it.

What about muliconnected domains? The standard
cannonical domains have corners but the following choice of a

cannonical »n connected domain

-l .
B0\ Eg DT ajrigy ap) (11.41)

“arfi2erd , A;%0 (11.42)

is smooth and treats all J(l's components on similar footing.
Bowever the Poisson kernel depends on 2 real variables for

doubly connected domains, 4 for NM=3 and 3I~-§ for N2, One
way of computing the kernel for n»2 is to forget (1ll.41) and
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replace §el by its multisheeted cover Qg Numerically only a
finite number of sheets can be considered. 1In order to reach
accuracy £ one has to take C(SIJA-;- sheets. These sheets

contain /Vcr.ﬂ)ag»\-é- points for ~n=2 and an order of

e.,vcm;A (n-1) (11.43)

points for Ny 2. This is unacceptable for n%»3? . One can of

coarse make ”-2 cuts in the domain and solve a MM gystem of

equations where A is the number of points on the cuts.




Appendix: Spectral Multiscaled Inteqration.

_Pomula (11.29) has been desined to be spectral (i.e. of
an infinite order of accuracy in A—*;) and conformally local.

In detail, suppose that we purturbe 4+8¢ by a relative amount
g« g

AA;Q[ -2 A A,Q( € (A.1)
A 4,94.—»,& Ay G+ EQ AFY 4 (A.2)
4 ;- e€-4
Az -Eb A( - 4:91) = 0(a, Cs) (A.3)
T - &yO2

Then the effect transmited to 9« €, by (11.29) is

On Q4 Ax QY
Doyt > Lol Of € ) (A.4)
e " 0( le¢-6r1*
which agrees with (11.13) up to the hidden unavoidable factor
of N,
Pormula (11.29) takes /M) operations to compute
versus G w4 #] operations for the usual spectral 3: » but

the lateris useless for multiscaled G . Now let us replace

(A.4) by the weakest acceptable requirment




baFie, 543004 + Of) (A.5)

which is not conformally local, but still works. We now pose
a question: What is the fastest scheme to acheive (A.5)? The

first natural try is

~ A

Ax3.6= 2,0 I Frsng (A.6)
S Ax3+464 20 (A.7)
3

but it violates (A.5) for multiscaled © .

We will now construct a spectral multiscaled method of
integrating 940 to é' . It can be iterated to compute
differetation, but it is as valueable in its own right.
Define the functions

Prixy - §Fx+ TV )-8 0x 70 (A.8)

Then clearly

AxO4 = Pruig, (A.9)




. A ] X
Plitde $[Prire Hhp il

(A.10)
and ,é:.‘¢ is a nice function so jn;ﬁ(j) Lok can be computed
from fﬁu #0514+ in the usual spectral way. Thus it takes

O(D’/VA N) operations do derive 4xf from ¢IJ') . Obviously

“ %
: A I@(x)
Q) - K e ox (A.11)
%
can be computed by a K points Gaussian integration if
4
I)Ja ﬁ"j;”’ ol - (A.12)
' 4
< },» e
Ja ‘&7:( “pe 55 ) (A.13)
We assume that
Jo<< NV (A.14)
The total number of operations is
ne O [Tk N dnr ] (A.15)

and assuming one dominant wave number the accuracy & has the




controlling factor

(A.16)

bt s O, 2 Lag, ) K |

Hence optimaly
ﬁ

mxr(jq—&’w . sz L)nban J%-%.,mvl';_‘{m (A.17)

] <3 (A.18)

b+
. L
L ls7.,.v- o
We do not have any non iterative differentiation method of

type (A.10) or a non iterative integration method of type

(11.29). Moreover (A.9-11) is unlikly to be the last word in

efficiency.




Index of Notation

The following notation is used throughout this thesis.

However we could not resist using some of the letters (such as

d.<,d, 2 ) for other purposes which are specified on
location. Sometimes functions are abbreviated by dropping

some of their last arguments, for example J(m,a,u,.ﬂ) to

J(u) or even J « We may olso drop a middle argument by
replacing it with a ". 1In all such cases the missing
argument's value is the one most recently listed inside the
same function with the same specified arguments. The letter ¢
with or without indices denotes a constant. No connection is
assumed between two ¢ 's in the same formula, not to mention

adjacent lines.

C Complex plane

8 Comlex plane with infinity

( '& Empty set

a° Closure of the set in

Q% Open of the set _
(a,('J Open interval between a and 4

A
where 4, beC




o

P\Q {uluep, vkal

to the j'th arqument

P-a {u 0| uep, 08}y
Con(P,Q) Connected components of the set
A intersecting the set [°
; Con(u, Q) Con({u},Q) where © is a point t'
3 20 Boundary of {1 in &‘ i
§ 30 (2.1) Conformal boundary
; b Qvdn
; '24(0,_0,.6.) (10.44) Perturbation boundary
’i A (0 L, (10.45) Reduced perturbation boundary
’ W™a v, 841 (0.142) -
j 3,)’ : Partial Derivative with respect
{
Ju (0.14) where 1 is complex
Ny (3.19) Cover domain
Teov (1, Q) (3.20) Cover map
e, Q) (3.9) Minimal radius of (1 at ¢
Na(u, Q,8) (10.46) Perturbation radius
«(n,0,P) (5.29) Angle change of a curve /° from

# to + where u,0¢e?

X (u, P Curvature of the curve P at ¢
K, Q,Q1 (10.95)
o(u,Q,0) (10.112)

€ slender (0.4,5)
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¢ conjugation
Atu,v, L)
Aotu, 5,01
Nl

D(V, a)

Det( 2, L2)
Do(®a, L)

- Do, ,8)
bcno, im0, 0
alw,un,v, Q)
F?ﬂv,aucaJl)
2wy,

Atu,v, Q)
crivu Q1
Tr om0
I{(u,u,.ﬂ.l
Flu, L1)
Pruv, Q)
I (0,4)
V(A)

w (W, 9,40)
Liw, 0,0
Stuwv, Q)
Sy, v, L)

(0.19,20)
(7.1)
(7.84)

(7.10)
(7.86)
(10.49)
(7.52)
(9.2)
(2.73,74)
(7.1)

(1.6)

(1.5)
(1.6)
(3.5)
(3.23,24)
(1.295)
(6.1)
.7
(6.2)

Internal Euclidian distance

The half plane
Disk

A aisk

d, disk
Perturbation disk
bottleneck's width

Line of least Euclidian distance
connecting 44 and ¢ in (1
Geodesic
Continuation of beyond and
Total geodesic = I"‘ufl"
Conformal mapping function
Conformal metric scalar

Conformal metric

Capacity
Harmonic measure

Modified harmonic measure

AT




g"(Ulvl-ﬂ-l
g#

S)

U, Q)
dtu,a,0,4)
(%912, 1,00, (1)
dalos, v, 0,50
J;A(unouo,leT)
afFe,.Q,8)
TC(A, pm)

(6.11) |
(6.6) ;
(6.2) Extremal length
(6.12)

(8.85)

(0.66)

(10.47.48) Perturbation size

(10.143) Generelized perturbation size
(10.50) Relative F perturbatin size
(10.39-41) m core of A
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